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Partial Multi-Label Learning with Noisy Label
|dentification

Ming-Kun Xie and Sheng-Jun Huang

Abstract—Partial multi-label learning (PML) deals with problems where each instance is assigned with a candidate label set, which
contains multiple relevant labels and some noisy labels. Recent studies usually solve PML problems with the disambiguation strategy,
which recovers ground-truth labels from the candidate label set by simply assuming that the noisy labels are generated randomly. In
real applications, however, noisy labels are usually caused by some ambiguous contents of the example. Based on this observation,
we propose a partial multi-label learning approach to simultaneously recover the ground-truth information and identify the noisy labels.
The two objectives are formalized in a unified framework with trace norm and ¢; norm regularizers. Under the supervision of the
observed noise-corrupted label matrix, the multi-label classifier and noisy label identifier are jointly optimized by incorporating the label
correlation exploitation and feature-induced noise model. Furthermore, by mapping each bag to a feature vector, we extend PML-NI
method into multi-instance multi-label learning by identifying noisy labels based on ambiguous instances. A theoretical analysis of
generalization bound and extensive experiments on multiple data sets from various real-world tasks demonstrate the effectiveness of

the proposed approach.

Index Terms—Multi-lable learning, partial multi-label learning, candidate label set, noisy label identification, multi-instance multi-label

learning.

1 INTRODUCTION

Multi-label learning (MLL) solves problems where each
object is assigned with multiple class labels simultaneously
[1]. For instance, an image may be annotated with labels
sea, sunset and beach. A large number of recent works have
witnessed the great successes that MLL has achieved in
many research areas, e.g., music emotion recognition [2], text
categorization [3] and image annotation [4].

In traditional multi-label studies, a basic assumption is
that each training instance has been precisely annotated
with all of its relevant labels. However, in many real-world
scenarios, it is difficult and costly to obtain precise anno-
tations. Instead, it is more common that a set of candidate
labels are roughly assigned by noisy annotators. In addition
to the relevant labels, the candidate set may also contain
some noisy labels, where the number of relevant or noisy
labels is unknown. For example, in crowdsourcing image
tagging (as shown in Figure 1), among the candidate labels
annotated by annotators, only some of them are accurate
ones owing to potential unreliable annotators. The scenario
has been formalized as a learning framework called partial
multi-label learning (PML) by [5].

To solve PML problems, one straightforward method is
to simply treat all the candidate labels as relevant ones.
Then the PML problem can be solved by standard multi-
label learning algorithms, e.g., Binary Relevance (BR) [6],
ML-KNN [7], CPLST [8] and so on. However, such methods
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Fig. 1. An example of partial multi-label learning. The image is partially
labeled by noisy annotators in crowdsourcing. Among the candidate
labels, house, tree, car, light and cloud are ground-truth labels while
flower, cat and people are noisy labels.

will be misled by the noisy labels in the candidate set, and
fail to generalize well on future data.

In order to deal with the challenge, several PML tech-
niques are proposed recently. Among them, the most com-
monly used strategy to learn from PML examples is dis-
ambiguation. It tries to recover ground-truth labeling infor-
mation from candidate labels, by either introducing label-
ing confidences [5], [9] or employing low-rank and sparse
decomposition scheme [10]. Despite the advances these
methods have achieved, a potential limitation is that they
neglect the cause of noisy labels in the candidate set, which
may be an important information for recovering the ground-
truth labels. These methods typically assume that noisy
labels are generated randomly, which may be not consistent
with many real-world scenarios. In practice, we observe that
noisy labels are usually caused by some ambiguous contents
of the example and there thus exist some relationships
between the noisy labels and feature representations. For
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example, in crowdsourcing annotation scenario, annotators
may be misled by some ambiguous contents associated with
the example in specific tasks. Figure 1 illustrates an example
in crowdsourcing image tagging, annotators provided the
image with noisy labels flower, cat and people due to the
misleading objects marked by the red, green and blue boxes.
Similar cases also happen in other tasks, such as ambiguous
words in the text categorization and ambiguous melody
fragments in the music emotion recognition.

Based on the observations mentioned above, in this
paper, we propose a new approach for Partial Multi-label
Learning with Noisy label Identification (PML-NI), which
recovers the ground-truth labeling information and identi-
fies the noisy labels simultaneously. Specifically, the multi-
label classifier and noisy label identifier are learned jointly
under the supervision of the observed noise-corrupted label
matrix. On one hand, the multi-label classifier is constrained
to be low rank by trace norm regularization to capture the
correlation among labels; on the other hand, the noisy label
identifier with sparsity regularization is trained to model the
feature-induced noise labels. Our theoretical analysis shows
that the generalization performance will be improved by
introducing feature-induced noise model. Comprehensive
experiments on multiple data sets from various real-world
tasks further validate that the proposed approach consis-
tently outperforms the compared methods.

In many real-world scenarios, one object can be repre-
sented by multiple instances simultaneously [11]. For exam-
ple, multiple patches can be extracted from an image where
each patch can be regarded as an instance, and thus the
image can be represented by a set of instances. To deal with
partial-labeled multi-instance data, we extend the partial
multi-label learning into multi-instance setting, and propose
a novel learning framework called multi-instance partial
multi-label learning (MIPML). By mapping each bag into
a feature vector, we extend PML-NI method to identify the
noisy labels based on ambiguous instances.

The rest of this paper is organized as follows: Section 2
reviews some related works; Section 3 and 4 introduce our
proposed PML-NI and MIPML-NI approaches, respectively;
experimental results are reported in Section 5, followed by
the conclusion in Section 6.

2 RELATED WORK

Partial multi-label learning is a powerful framework to
deal with partially labeled data in multi-label setting. It is
derived from two popular learning frameworks: multi-label
learning and partial label learning.

There are plenty of literature on multi-label learning.
Among them, Binary Relevance is the most simple approach
which decomposes the task into a set of binary classification
problems [6]. There are many studies trying to exploit the
label correlations for enhancing the multi-label learning [12],
[13]. Some of them focus on pairwise correlation [14], while
some others consider high order correlation among all labels
[15].

Partial label learning (PLL) is a framework for learning
from partially labeled data for single label tasks [16], [17].
In PLL problem, the partial label set consists of exactly one
ground-truth label and some other noisy labels. The most
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common strategy applied in PLL methods is disambiguation,
which tries to recover the ground-truth label from the can-
didate set [18], [19], [20]. The disambiguation strategy are
mostly implemented in two ways: one is to assume certain
parametric model and the ground-truth label is regarded as
the latent variable which can be iteratively refined by opti-
mizing certain objectives, such as the maximum likelihood
criterion [16], [17] or the maximum margin criterion [21]; the
other one is to assume equal importance of each candidate
label and then make prediction by averaging their modeling
outputs. For parametric models, the averaged outputs for
all candidate labels are distinguished from the outputs for
candidate labels [22]. For non-parametric models, the pre-
dicted label for unseen instance is determined by averaging
the candidate labeling information from its neighboring
examples in the PL training set [23], [24]. Compared to
partial label learning, PML is much more challenging owing
to the number of ground-truth labels in the candidate set is
unknown. Note that in multi-label learning, Label Powerset
[25] transforms the multi-label learning problem to multiple
multi-class problems. However, it is difficult to employ the
similar technique to transform PML problem into multiple
partial label learning problems since in PML, besides the rel-
evant labels, the candidate set also contains multiple noisy
labels. For a specific class label, it is difficult to determine
whether an instance whose candidate set contains the label
is a positive instance, since the label may be a noisy label for
the instance.

To solve PML problems, the most intuitive method is to
treat all candidate labels as relevant ones. In this case, PML
problem can be solved by off-the-shelf multi-label learning
algorithms. Nevertheless, such methods will be misled by
the noisy labels in the candidate set, which may lead to
degraded performances. In order to overcome this prob-
lem, some techniques are designed to solve PML problems
recently. For example, two effective methods PML-/c and
PML-fp are proposed in [5] by introducing a confidence
value for each candidate label. In [26], authors propose
to achieve disambiguation by utilizing low-rank matrix
approximation and latent dependencies between labels and
feature. The decomposition scheme is utilized to tackle PML
data in [10]. PARTICLE [9] identifies the credible labels with
high labeling confidences by employing an iterative label
propagation procedure. In [27], authors deal with the PML
problems by using adversarial training. DRAMA [28] trains
a gradient boosting model fit the label confidence learned
from manifold structure in the feature space. Disambigua-
tion procedure is performed for candidate sets by using a
relabel mechanism in [29]. PML has been extended to some
other learning scenarios, such as multi-view learning [30]
and semi-supervised learning [31]. Despite the advances
these methods have achieved, a potential limitation is that
they do not consider the cause of noisy labels in the candi-
date set, which may be an essential information for solving
PML problems.

During the past few years, there were many methods de-
veloped to solve MIML problems. Among them, MIMLSVM
and MIMLBoost [11] are two early proposed methods,
in which the former degenerates the MIML problem into
single-instance multi-label tasks while the later degenerates
MIML into multi-instance single label learning. In [32],
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authors propose a generative model for MIML problems.
Nearest neighbor is adapted into MIML setting in [33].
Neural network is employed to solve MIML problems in
[34]. A hidden conditional random field model for MIML
image annotation is proposed in [35]. By optimizing ranking
loss, RankLossSIM method is proposed in [36] for MIML
instance annotation. A method called KISAR is proposed
to discover the relation between labels and instances in
MIML learning [37]. In [38], authors propose MIMLfast to
solve large-scale MIML problems. In [39], a discriminative
probabilistic model is proposed for MIML instance anno-
tation. Recently, as the development of deep learning, the
emergence of deep MIML methods proposed in [40] offers
a powerful framework for solving MIML problems.Some
studies aims to extend the MIML framework to novel set-
tings, such as multi-view learning [41], novel class detection
[42] and instance clustering [43].

3 THE PML APPROACH

For each partially labeled training example, we denote by
x; € R? a feature vector and its corresponding label vector
y € {0,1}7 with ¢ class labels. Let X = [x1, ..., X,] € R¥*"
and Y = [y1,¥2,-,¥n] € {0,1}9%" denote the feature
matrix and noise-corrupted label matrix, respectively. In this
setting, y;; = 1 means the j-th label is a candidate label
to the i-th instance. For any A, B € R%*", we denote by
(A, B) = tr(A" B) their Hilbert-Schmidt inner product.

3.1 The PML-NI Framework

In partial multi-label learning, each instance is associated
with a candidate label set which contains both ground-truth
labels and noisy labels and thus the observed matrix Y can
be represented as following;:

Y=Y, +Y,

where Y, and Y,, denote the ground-truth label matrix
and noisy label matrix, respectively. In traditional multi-
label learning, the ground-truth label matrix Y, is often
approximated by a linear mapping W from the feature
space to the target space:

Y, ~ WX (1)
st. rank(W) <e
where W = ['wl,wg,...,wq]T € R9*? is a weight ma-

trix called the multi-label classifier. Here, for simplicity,
we omit the bias term which can be easily extended. In
multi-label learning, a common assumption is that there
exist label correlations among different labels [15] and the
feature mapping matrix W is thus linearly dependent. To
capture such intrinsic property of the multi-label classifier,
the constraint rank(W) < e is employed to introduce the
low-rank assumption.

As mentioned in the above discussion, in many real-
world scenarios, noisy labels are usually caused by some
ambiguous contents of the example and there thus exist
some relationships between noisy labels and feature con-
tents. Here we model the noisy labels as the outputs of a
linear mapping from the feature representations as follows:

Y, ~ SX @)

s.t. card(S) <o
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where S = [s1, S2, ..., sq]T € R7%4 is a weight matrix called
the noisy label identifier. Here, the bias term is also omitted
for simplicity. Note that noisy labels are usually caused by
some specific content, i.e., only a few of ambiguous and the
feature mapping matrix S is sparse which indicates only
some key features are activated. To capture such structure
information, we use constraint card(S) < o to introduce
feature-induced noise model, where card(S) is the cardi-
nality operator which measures the number of non-zero
elements in S. Accordingly, the goal of our framework is
to determine the optimal parameters W and S given the
observed label matrix Y and feature matrix X. However,
neither the ground-truth labels Y, nor noisy labels Y,
here are known and the equations in Eq.(1) and Eq.(2) are
thus intractable. To solve the problem, we propose a joint
learning model H that can identify the noisy labels while
training the multi-label classifier simultaneously:

min £ (H,X,Y)+ AR (H) 3)
HW,S
st. H=W 4+ S8
rank(W) <e
card(S) <o

Here, H € R%*? is the joint learning model that consists
of the multi-label classifier W and noisy label identifier S.
L is the loss function to minimize empirical loss between
modeling outputs X and the observed matrix Y. R is a
regularization term to control the model complexity, where
A is a balancing parameter. For simplicity, we choose the
least square loss for model training and square Frobenius
norm to control the model complexity, and then the opti-
mization problem in Eq.(3) can be re-written by:

min 5 |[Y — HX|fp + 3 [ H|; o
st. H=W+ S
rank(W) < e
card(S) <o

Unfortunately, the problem (4) is hardly solved due to
the intractability of rankness and cardinality constraints. To
deal with the issue, the Lagrange form of problem (4) is
alternatively solved:

Jin 5 1Y = HX o+ 3 |[HIlg + Srank(W) ()

+ycard(S)

st. H=W+ S

where 8 and v are balancing parameters. However, it is
also difficult to solve the problem (5) due to the rankness
and cardinality operators are highly non-convex and com-
putationally NP-hard. Therefore, these two operators are
relaxed by their convex surrogate, i.e., the trace norm for
low-rank property [44] and ¢;-norm for sparsity [45]. Finally,
the optimization problem can be formulated as follows:

: 1 2 A 2
in s Y - HX|p + 2 [Hlp + 5IWl,.  ©)
+7 1151l
st. H=W 4+ S
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3.2 Optimization

To solve the problem (6), we firstly apply the augmented La-
grange multiplier method to obtain the following Lagrange
function:

LHW.S A p)= @)

B IW + 1S, +

2 2
Y — HX|[; + 5 | H

2
S5IH-W -8+ A/ulp

where A € R?9*? is the Lagrange multiplier matrix and
1 is the penalty parameter. The inexact ALM (IALM) [46]
method can be employed to solve the optimization problem
in Eq.(7) by optimizing each of variables iteratively. The
main optimizing rules are summarized as follows.

With W and S fixed, the optimization problem in Eq.(7)
with respective to H can be reformulated as follows:

. A 1
min||Y — HX[[g + 5 [ HIp + 5 [|1H W — 8+ A/ul;
(8)
which can be solved in a closed form:
Hppy = (YX T+ Wi+ pSk+A) (XX + A T+pI)~" (9)

With H fixed, the variables W and S can be optimized
by solving following problem:

. 2 2
win 8 W, + 711l + 5 1 H - W - S+ A/ul};

which is a robust PCA (RPCA) problem [46], and the opti-
mizing rules are given:

Wit Ta/u [Hi — Sk + Ap/ ]
Ser1 = SyyuHp — Wigr + A/ ]

Here, T is the single value thresholding operator [47], which
firstly performs singular value decomposition on Hy, — Sj, +
Ay /pr = UEV', then the solution is given by UsvT,
where E” = max(0,%; — B/p). Sy is the shrinkage
operator, which is defined as S,,(a) = (e —w)4+ — (—a—w) 4.
At last, the Lagrange multiplier matrix A and penalty
parameter 1 are updated based on following rules:

Aptr Ap + p(Hp1 —
Mk+1 = min(,uma)u P,Uk)

Wig1 — Sk+1)

where (imax is the maximum value of 1 and p is a positive
updating parameter which are defined by users. Algorithm
1 summarizes the main steps of PML-NI method.

Theorem 1. For Algorithm 1, if {u} is nondecreasing and
St = oo, then (Wi, Sk) converge to an optimal
solution (W*, S*) to the PML-NI problem.

Proof. According to [46], as Hy, , — W, — S;,, =
wy(Ap — AZ),by the boundedness of A} and as & —
+00, we have H* = W* + S*. Therefore, the last term
of Eq.(8) equals zero and H* becomes the optimal solution
of equation ||'Y — HX||F 2 ||H||F Accordingly, (Wy, Sk)
converge to an optimal solutlon (W*,8*) to the PML-NI
problem.

Algorithm 1 PML-NI Method

Input: Feature matrix X € R4*"  Observed label matrix
Y € {0,1}2*" as well as balancing parameters A, 5
Output: Learned weight matrix (W*, %)

1: Initialize o > 0,p > 1land k=0

2: while not converged do

3: Updating Hj,; 1 according to Eq.(9)
Updating Wiy = Tg, [Hr — Sk + A/ ]
Updating S¥+! = Sy [Hy = Wi + Ag /]
Updating Apy; = Ay + i (Hip1 — Wip1 — Sky1)
Updating pt+1 = min(tmax, ppik)

8: k< k+1

9: end while
10: return result

3.3 Generalization Bound

In this section, we firstly provide the Rademacher complex-
ity [48] for PML-NI, which is a commonly used tool for
performing comprehensive analysis of data-dependent risk
bounds.

Definition 1. Let G be a family of functions mapping from X
to [0,1] and S = {x1,...,x,} € X™ a fixed sample of size n.
Then, the empirical Rademacher complexity of G with respective
to sample S is defined as:

~

Rs(G) =Eq (10)

sup — ng i ]

geg 1

where 0 = (01, ..., 0y,) are Rademacher variables with o; inde-
pendent uniform random variable taking value in {—1,41}.

Lemma 1. Let H = WxS be the family of functions for PML-NI
with linear functions (W, S) € H. For the square loss function

¢, the Rademacher complexity of the proposed algorithm can be
bounded by:

V2(29)

n

Rs(loH) < E

WP (W' 45T, X>] 1)

where X will be defined later.

Proof Based on the Definition 1, the Rademacher complexity
with respective to H and £ can be rewritten as:

sungz yi :|

heM j 1

J4
Rs(toH) =~

where the subscript o is omitted for notational simplicity
and i € H is a real value function. According to the contrac-
tion inequality for Rademacher complexity (see Theorem 3
of [49]), note that the square loss is 2¢-Lipschitz for PML-NI,
then the Rademacher complexity defined in above equation
can be bounded by:

Rs(loH) <

heH ;27 ish

V2t [zz% ]

where h;(x;) corresponds the j-th component of h(x;),
[0ij]nxq are n x ¢ Rademacher variables with o;; indepen-
dent uniform random variable taking value in {—1,+1}.
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Accordingly, the Rademacher complexity of PML-NI algo-
rithm can be bounded by:

5 2(2 G
RS(EOH)SME sup > Y oy(w; +85) %
" heH ;21 j=1

where w; and s; denote the j-th rows of W and S, respec-
tively, which are the feature mappings vector for the j-th
label. To further simplify the notations, X; = " ; 0y;%; is
used to represent the weight summation of feature vectors
for j-th label. By arranging X; for each of ¢ labels one-by-
one in columns, we obtain the weight summation matrix
X € R4, Accordingly, the right side of the above equation
can be concretely rewritten as follows:

@E [ sup <WT + ST,X>}
n (W,S)eH

which finishes proof of Lemma 1.

Theorem 2. Let H = W x F be a family of functions for PML-
NI with q outputs, and (W', S) € H be linear functions learned
on S ={x1,...,xpn} € X" by PML-NL The learning algorithm
further encourages that rank(W') < e and ||S||; < o. Then the
Rademacher complexity of PML-NI with square loss { satisfies

2v/2q(,/q¢ + qo)

Rs(loH) < Jn

where we assume that ||x|| < 1.

Proof According to Lemma 1, we have

Rs(loH)

_27@ E sup <WT—|—ST,)A(>
L(W,S)eH

<220 Bl sup (||W||*+||S||*)~||}A(||F]
L(W,S)eH

<22 gl sup (e+alSh) - IX]e
L(W.S)eH ]

It is also easy to prove the bound as follows:

q q n
SOIX13| =B, [Z > oix;
j=1

j=1lli=1

9
EGHXH% =E,

2_
Then we have

2v/2¢(\/q€ + qo)
Vn
which finishes the proof of Theorem 2.
To conclude the Theorem 2, the following Lemma is

introduced to show the relationship between the risk of an
algorithm and its Rademacher complexity.

Rs(loH) <

Lemma 2. [48] Let G be a family of functions. For a loss function
¢ bounded by ©, then for any 6 > 0, with probability at least 1—0,
forall g € G such that

~ log2/4
Lolg) < Lslg) + Rs(t0G) + 30/ B0
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where Lp(g) and Ls(g) are risk and empirical risk with respec-
tive to f.

Lemma 2 motivates us to acquire a smaller Rademacher
complexity when designing the algorithm. To emphasize the
superiority of the proposed algorithm, let us firstly consider
a typical algorithm W for solving PML problems, which ig-
nore the noisy labels in the candidate set and still minimize
rank(W) to exploit label correlations. Without considering
the negative influence of the noisy labels , the Rademacher
complexity is likely to be large due to the high-rankness of
W. Compared to the algorithm discussed above, according
to Theorem 2, the Rademacher complexity of PML-NI can
be bounded by two parts corresponding to low-rankness
of W and sparsity of S, respectively. Among them, the
latter part, i.e., the sparsity of S can highly alleviate the
negative influence of the noisy labels, thus cut down the
rankness of the classifier W and further obtains a lower
bound of Rademacher complexity, which leads to a good
generalization performance.

4 MULTI-INSTANCE PARTIAL MuLTI-LABEL

LEARNING

In this section, we extend PML-NI to multi-instance partial
multi-label learning. Compared to traditional PML, MIPML
is more naturally for representing partial-labeled data since
each object can be described by high-level representation
instance, which makes the task of identifying noisy labels
based on the representations more achievable. In MIPML
problems, each example is represented by a bag of instances
and associated with a set of candidate labels. Our goal
is to train a classifier based on training examples with
candidate label sets which can predict all the relevant labels
for a unseen bag. To solve MIPML problems, one straight-
forward method is to simply treat all candidate labels as
relevant ones. Then the MIPML problems can be solved
by standard multi-instance multi-label learning algorithms,
e.g., MIMLSVM [11], MIMLfast [38] and so on. Obviously,
such methods will be over-fitting due to the noisy labels
in the candidate set. To solve the problem, in this paper,
we propose a new method for multi-instance partial multi-
label learning with noisy label identification (MIPML-NI),
which adapts PML-NI method to identify noisy labels based
on ambiguous instances while recover the ground-truth
labeling information.

In MIPML, we are given a set of training examples
D = {Bi,yi}j-1, where B; = {x;;}7", is a bag which
consists of m; instances and y; = [yi1, ..., Yig] € {0,1}9 is
the label vector of bag B;. Here, y;; = 1 indicates the label
j is candidate to the i-th bag B;. Let Y = [y1,y2,...,¥n] €
{0,1}9%™ denote the observed label matrix. The goal is to
learn a classifier based on D which can predict all relevant
labels for any unseen bag.

Inspired by [11], [37], we firstly represent a bag of
instances by a feature vector:

¢(B) = [sim(B, ¢1), ..., sim(B, ¢)] , (12)

where cy, ..., c; are k prototypes of all the instances, and
sim is a function to measure the similarity between bag
B and prototype ¢;,V € {1, ..., k}, where the larger value
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of sim(B,c;), the more similar the bag B and c¢;. In
this paper, the prototypes are instantiated by centroids of
clusters obtained by using k-means. Specifically, we em-
ploy the Gaussian distance as the similarity function, i.e.,

sim(B, ¢) = minkep exp(—%), where § is set to be the
averaging distance between the instances in a cluster. For
notational simplicity, we denote the feature vector ¢(B;) for
bag B; as ¢; and the matrix ® = [¢1,...,¢,] € RF*" ig
obtained by arranging feature vectors of all bags.

In such case, each prototype can be treated as a group
of similar instances. Accordingly, the task of identifying
ambiguous content can be transformed into the task of
identifying ambiguous instances, which can be formulated
as following;:

Y,~S®

s.t. card(S) <o

where S is the noisy label identifier for multi-instance
partial-labeled data. By further generalizing the Eq.(6), the
optimization problem of MIPML-NI can be formulated as
follows:
. 2 2
Aun B IY — HOlE 4 WG+ W, (3)
+v 1Sl

st. H=W+ S

Here, W = [wy, ..., w;] € R7*¥ is the multi-instance multi-
label classifier. The optimization problem can be effectively
solved by Algorithm 1. Note that theoretical results in
section 3.3 can be easily applied to MIPML-NI method with
slight modifications. The noisy label identifier S of MIPML-
NI method can identify the noisy labels based on ambigu-
ous instances and thus alleviate their negative influence.
Therefore, the Rademacher complexity of the model will
be lowered due to the low-rankness of the multi-instance
multi-label classifier W. Since the Rademacher complexity
is a kind of data-dependent complexity, the only need is
to re-compute the Rademacher complexity for MIPML-NI
method as done as in the case of PML-NI method.

5 EXPERIMENTS

The experiments for PML tasks are firstly reported, followed
by the experiments for MIPML tasks.

5.1 Study on PML Data
5.1.1 Experimental Setting

We perform experiments on totally 15 data sets !. These data
sets spanned a broad range of applications: image, scene and
corel16k for image annotation, music_emotion, music_style and
birds for music recognition, genbase, YeastCC, YeastMF and
YeastBP for protein classification as well as medical, slashdot,
enron, bibtex and tmc2007 for text categorization. We also did
some pre-processing to facilitate the partially labeling as in
[5], [9]. Specifically, for data sets with too many class labels
(more than 100 in our experiments), their rare labels are

1. Publicly available at: http://mulan.sourceforge.net/datasets.html
and http://meka.sourceforge.net/#datasets
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filtered out to keep under 15 labels, and instances without
any relevant labels are filtered out.

There are different criteria for evaluating the perfor-
mances of multi-label learning. In our experiments, we
employ five commonly used criteria including ranking loss,
hamming loss, one error, coverage and average precision. More
detail about these evaluation metrics can be found in [1].
For the ranking loss, hamming loss, one error and coverage
metrics, the smaller value, the better the performance. For
the average precision metric, the larger the value, the better
the performance.

To validate the effectiveness of the proposed PML-NI 2
method, we compare with four state-of-the-art PML algo-
rithms as well as two well-established MLL approaches:

o PARTICLE [9]. It transforms the PML task into a multi-
label problem through a label propagation procedure.
Then a calibrated label ranking model is induced to
instantiate two PML methods PAR-VLS and PAR-MAP.

e« PML-LRS [10]. It utilizes low-rank and sparse de-
composition scheme to capture the ground-truth label
matrix and irrelevant label matrix from the observed
candidate label matrix.

o fPML [50]. It employ the low-rank approximation of the
observed instance-label association matrix to estimate
the labeling confidence and then trains multi-label clas-
sifier.

e ML-ENN [7]. It is a nearest neighbor based multi-label
classification method. ML-kNN is a very popular base-
line method in multi-label learning literature owing to
its simplicity.

o CPLST [8]. It is a typical label embedding approach
in MLL, which integrates the concepts of principal
component analysis and canonical correlation analysis.

For PML-NI, parameter A is selected from {1, 10,100}
by 3-fold cross validation, and the other two parameters are
set f = 0.5 and v = 0.5, respectively. In our experiments,
although the parameter ) is determined by cross validation,
the algorithm is generally not very sensitive to the parame-
ter and it tends to obtain decent performances with a default
value, such as A = 10. For the other comparing methods,
parameters are determined in the same way if no default
value given in their literature.

For the last 10 data sets, to construct partial multi-label
assignments for the training data, we simulate the annota-
tion process by using a svm classifier trained on original
supervised multi-label data sets as the human annotator.
Specifically, a svm classifier is firstly trained on the multi-
label data set. Then, for each instance x; of the data set,
we add the irrelevant noisy labels of x; with a% number
of ground-truth labels according to their probabilities to
be relevant labels predicted by the svm classifier and the
a% is varied in the range {50%, 100%, 150%}. To examine
the performance of the proposed approaches, we performed
experiments with all possible percentages of the noisy la-
bels. In the following content, we will show details of three
groups of experiments on these totally 35 data sets.

2.Source code available at:

PMLNIcode.zip

http:/ /milkxie.github.io/code/
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TABLE 1
Experimental results of each comparing approach in terms of ranking loss, where e/o indicates whether PML-NI is superior/inferior to the other
method.

Data a% PML-NI PAR-VLS PAR-MAP PML-LRS fPML ML-ANN CPLST
music_emotion 243 £.004 | .261 +.007e  .245 4 .006e  .256 £ .002e  .261 £ .004e  .364 £ .009e¢  .257 + .006e
music_style .140 £.007 | .161 +.005e  .161 4= .006e  .148 £ .006e  .154 £ .006e  .232 £ .006e  .157 & .005e
YeastCC 158 £.015 | 432+ .031e  .261 4+.036e  .169 £ .007e  .420 £ .020e  .357 £ .010e  .404 + .010e
YeastMFE 205+ .011 | .388£.052e¢  .299 + .022¢ 227 £+ .013e  .392 -+ .014e .357 + .01le  .363 £ .004e
YeastBP 185+ .009 | 413 £ .022e¢  .255+ .006e  .206 = .013e  .412+ .007e¢  .354 + .009e¢  .401 £ .004e
50% 206 £ .026 | 438 £.058e 285+ .021e  .302 £ .018e  .287 £ .017e  .324 4+ .040e  .252 £ .012e
birds 100% | .217 +.020 | .400 & .046e  .298 +.017e¢  .323 £ .028e¢  .307 = .028e  .322 £+ .019e¢  .283 £ .031le
150% | .240+.020 | .466 4+ .066e  .307 £ .026e  .330 £+ .014e  .326 + .028e¢  .331 4+ .030e .293 £ .013e
50% .003 £.004 | .025+£.013e .012 4+ .006e .017 £=.004e .008 £ .007e  .008 &+ .004e  .050 £ .010e
genbase 100% | .006 £ .004 | .059 4 .030e .010 £ .004e  .017 £ .003e  .009 £ .003e .011 4 .004e .063 £ .018e
150% | .007 £.004 | .017 +.008e .011 £+ .004e .031 + .008e¢ .016 +.007e .027 4+ .007e .075 =+ .016e
50% .017£.008 | .157 +.034e  .071 4+ .015e¢ .048 £ .013e  .054 £.011le  .047 £ .008e  .089 % .008e
medical 100% | .018 +.007 | .155+ .035e¢  .074 4+ .017e  .049 + .008e¢ .053 + .01le  .047 4 .008e .097 + .010e
150% | .019+£.005 | .147 +.029e  .073 £ .013e  .053 £ .005e¢  .045+ .010e  .049 4= .005e¢ .102 £ .015e
50% 177+£.013 | 195+ .045e 267 + .102e¢ 187 +.010e  .213 £ .019e¢  .186 + .016e  .189 £ .019e
image 100% | .176 £.019 | .198 4 .042e  .267 £ .099e¢  .182 + .014e  .203 +.012e¢ .190 4+ .012e¢ .189 £ .010e
150% | .184 4+.010 | .205+ .059e  .265+ .139e¢  .185+ .015e¢  .228 + .010e .212 4 .013e .196 £ .013e
50% .041+£.003 | .150 £.032e¢  .047 £ .008e  .041 £=.004e  .047 £ .003e  .048 = .008e  .048 £ .004e
slashdot 100% | .039 +£.005 | .149 4+ .036e  .047 £ .009e¢  .042 + .007e  .047 £ .007e  .047 4+ .006e  .055 £ .005e
150% | .037 £ .004 | .175 4 .016e  .047 £ .009e¢  .047 £ .006e  .049 + .009e  .048 +.005e¢ .066 + .011e
50% 172+ .011 | 318 £.070e 188 + .047e 163 £ .021o0  .164 £ .0090 .180 4+ .007e  .301 £ .019e
enron 100% | .171+.015 | .376 +-.088e  .216 £+ .048¢ .168 +.0120 .177+ .014e .190+ .01le .294 4 .01lle
150% | .1724+.013 | .366 + .077e¢  .209 4+ .047e¢ .171+ .021c .176 +.013e¢  .196 +.01le .297 + .017e
50% .105+.005 | .154 £ .028e¢  .198 + .041e  .106 = .01le  .114 + .006e .1154 .007e  .165 £ .01l5e
scene 100% | .106 +.006 | .153 + .035e  .187 4 .057e¢  .107 £.009e¢ .112 4+ .007e .122 4+ .012e¢ .162 + .010e
150% | .126 +£.013 | .178 +.028e¢  .200 £ .038e  .122 + .0090  .128 + .008e¢  .146 +.019e  .219 £ .007e
50% .041 +.004 | .080 £ .002e¢ .057 & .00le  .042 £ .002e¢  .077 £ .008e  .1154 .008e .115+.010e
bibtex 100% | .033 £.005 | .095 £ .006e .062 =+ .004e .035+ .004e .060 £ .009e .136 +.019e  .138 £ .002e
150% | .033 £.001 | .098 4+ .007e .064 £+ .004e .035+ .003e .062+.007e¢ .143 4+ .01le .151 £ .006e
50% 221 +.004 | .288 £.002¢  .236 = .003e¢  .214 £+ .0030  .229 £ .005e¢  .264 +.007e  .229 £ .004e
corel16K 100% | .226 £.007 | .334 4+.008e  .262 £ .005e .226 £ .004 .242 £ .003e 273 +.002¢  .239 £ .005e
150% | .227+.006 | .326 +.007e  .258 £ .003e  .228 + .00le  .244 + .003e  .275 4 .007e  .237 £ .005e
50% .046 £.001 | .087 £ .014e  .057 & .008e .046 £ .001 .063 +£.001e  .075 =+ .004e  .080 £ .002e
tmc2007 100% | .047+.002 | .082 4 .014e .057 £ .009e¢  .047 £ .002e¢  .064 + .004e .079 +.002e¢ .081 £ .001e
150% | .050 £ .001 | .107 4= .023e  .060 £ .010e  .050 £ .002e¢  .066 £ .004e  .082 4 .001e .086 £ .001e

5.1.2

We follow the setting in [9] to only report detailed results of
each comparing methods in terms of ranking loss and average
precision in Table 1 and 2, while similar results can be ob-
served in terms of other evaluation metrics. When compare
PML-NI approach with other methods, our algorithm shows
significant superiority. It achieves the best performance in
most cases. Among the five comparing approaches, PML-
LRS shows some superiority, and is better than PML-NI
with three cases on enron, one case on scene as well as one
case on corel16k in terms of ranking loss and two cases on
scene in terms of average precision, while losses for other
cases. fPML outperforms PML-NI with one case on enron
in terms of ranking loss, while losses for other cases. ML-
kNN is better than PML-NI with one case on scene in terms
of average precision.

To validate the effectiveness of PML-NI for real applica-
tions, we also perform experiments on real-world PML data
sets music_emotion and music_style. The results show that
PML-NI achieves the best results in almost all cases except
for the data set music_emotion where PAR-VAL achieves
comparable performance than PML-NI in terms of average
precision.

Furthermore, we also use Friedman test [51] as the sta-
tistical test to analyze the relative performance among the
comparing approaches. Assume that there are k algorithms

Comparison Results

and N data sets. Let r] denotes the rank of j-th algo-
rithm on the i-th data set. The average ranks of algorithms
R; = + >, 7! is used for Friedman test comparison. Under
the null-hypothesis, which indicates that all the algorithms
have equivalent performance, the Friedman statistic Frwith
respective to the F-distribution with (k — 1)(/N — 1) degree
of freedom can be defined:

(N - Dx%
Fpr= —F—-——5 14
NG - 9
where,
12N k(k+1)?
2 _ 2 _

Table 3 reports the Friedman statistics Fr and the corre-
sponding critical value with respective to each evaluation
metric (# comparing algorithms k = 7, # data sets N = 35).
For each evaluation metric, the null hypothesis of indistin-
guishable performance among the comparing algorithm is
rejected at 0.05 significance level.

Then, the post-hoc Bonferroni-Dunn test [51] is utilized
to illustrate the relative performance among comparing ap-
proaches. Here, PML-NI is regarded as the control method
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TABLE 2
Experimental results of each comparing approach in terms of average precision, where e/o indicates whether PML-NI is superior/inferior to the
other method.

Data a% PML-NI PAR-VLS PAR-MAP PML-LRS fPML ML-ENN CPLST
music_emotion .614 £.005 | .605 % .006e 614 £ .011 .589 £ .006e .586 £ .004e .506 £ .009e .595 £+ .007e
music_style 737 £.009 .716 £ .010e 677 £ .015e .714 £ .008e .706 £ .012e .658 £ .009e 717 £ .011e
YeastCC .601 £ .021 214 £ .024e .399 £ .045e 574 £ .020e .176 £ .008e .320 £ .006e .129 £+ .006e
YeastMF 482 +.012 .237 £+ .023e 291 £+ .014e 447 £+ .009e .246 £ .004e 281 £+ .011e .274 £ .005e
YeastBP 429 +.010 | .136 + .029e 278 £+ .038e .380 £+ .016e .085 £ .004e 184 £ .012e .130 £ .009e
50% 483 +.006 | .413 + .034e .395 £ .024e .371 £ .030e .387 4 .033e .370 & .037e 451 £+ .015e
birds 100% 451 £ .042 416 £ .042e .386 £ .024e .352 £ .033e .368 £ .033e .366 £ .037e 410 £ .033e
150% | .424 +.023 | .392 + .033e .369 £ .023e .344 £+ .031e .348 £+ .025e .352 £ .017e .387 £ .040e
50% 983 £ .010 | .895 &£ .022e .968 £+ .020e .860 £ .022e 977 £ .014e 948 + .011e 738 £ .028e
genbase 100% 969 + .017 .819 £ .039e .965 £+ .019e .851 £+ .025e .951 £+ .018e .920 £ .055e .723 £+ .030e
150% | .947 £+ .024 | .897 + .042e .960 £ .0100 785 £ .049e .894 £ .040e 773 £ .069e 612 £ .020e
50% .866 £.037 | .703 £ .021e 737 £ .029e .738 £ .034e .796 £ .013e 737 £ .014e 592 £ .027e
medical 100% .854 + .007 .680 £ .020e 714 £+ .031e 724 £ .020e 792 £+ .016e 734 £+ .014e .568 £ .027e
150% | .797 £.013 | .673 £.013e .675 £ .018e .665 £+ .014e 741 £ .029e .664 £+ .032e 498 £+ .031e
50% 779 £.016 770 £ .055e .734 £ .076e .765 £+ .013e 734 £ .027e 767 £ .015e .766 £ .019e
image 100% | .781 +£.023 | .767 £+ .051e 735 4+ .077e 772 £+ .016e .750 £ .010e 763 £+ .016e .769 4 .007e
150% 772 £ .011 .760 £+ .068e .709 £ .150e 770 £ .016e 713 £ .011e .732 £ .009e 757 £ .015e
50% .896 + .006 799 £+ .104e .884 £+ .015e .893 £+ .006e .881 £ .009e .883 £+ .014e .832 £ .011e
slashdot 100% | .895 + .010 | .636 + .167e .885 £+ .016e .893 £ .012e 879 4+ .011e .882 4 .011e .805 £ .016e
150% .885 £+ .007 493 £+ .011e .884 £+ .014e .844 £ .010e 876 £+ .012e 878 £ .012e 697 £+ .015e
50% .549 + .010 297 £+ .132e .432 £+ .068e 528 £+ .022e 497 £+ .023e 450 £+ .017e .350 £ .004e
enron 100% | .491 £.023 | .271 £ .129e .398 £ .081e 474 £+ .019e 452 £+ .013e 412 £+ .016e .346 £+ .013e
150% 461 + .026 .264 £+ .120e .397 £+ .058e 453 £+ .021e 435 £+ .021e .395 £ .017e .326 £ .022e
50% .819 +.004 | .787 £ .037e 756 £ .049e .824 £+ .0170 .811 £ .005e .832 4+ .0110 .750 £ .023e
scene 100% .824 £+ .008 783 £ .048e 761 £ .075e .820 £ .016e .811 £ .010e .822 £ .014e .752 £ .010e
150% | .797 £ .012 | .760 £ .043e 743 £ .048e .801 4 .0140 .793 £+ .015e 794 £+ .021e .682 £ .010e
50% 888 +£.013 | .810 =+ .009e .831 & .006e .888 £+ .007 .801 £+ .015e .748 £+ .009e 733 £ .017e
bibtex 100% .886 £+ .012 .763 £ .010e .816 £ .011e .874 £+ .013e .815 £+ .017e .708 £ .028e .621 £ .008e
150% | .888 £ .005 | .761 £ .010e .816 £ .009e .873 & .006e .805 £ .007e 697 £+ .019e 598 £+ .015e
50% 511 £.008 | .473 £ .003e 484 £+ .003e 511 £ .004e 497 £ .004e .456 £ .010e .500 £ .003e
corell6K 100% | .484 + .010 | .453 &+ .006e .454 £+ .007e 481 £ .007e 472 £+ .005e .436 £ .004e 476 £+ .005e
150% | .486 £ .005 | .458 &£ .004e .455 £ .009e 479 £ .005e 473 £ .006e .433 £ .009e 475 £+ .007e
50% .804 £ .002 731 £ .033e 783 £ .022e .803 £ .006e .780 £ .004e .746 £ .008e 747 £ .002e
tmc2007 100% | .803 &.005 | .737 & .035e 785 £+ .021e .802 £ .005e 778 & .007e 729 4 .004e .738 + .005e
150% .793 £ .003 676 £ .033e .760 £ .036e .792 £ .005e 773 £ .008e .710 £ .005e .721 £ .002e

TABLE 3 is interconnected to each other with a thick line. From the

Friedman statistics F'r in terms of each evaluation metric and the
critical value at 0.05 significance level ( # comparing algorithms k£ = 7,
# data sets N = 35).

Evaluation metric Fr critical value
Hamming Loss 19.1880

Ranking loss 46.1843

One Error 14.5149 2.2852
Coverage 42.3920

Average Precision 26.2625

whose average rank difference against the comparing algo-
rithm is calibrated with the critical difference (CD):

k(k + 1)
6N

where critical value ¢, = 2.638 at 0.05 significance level.
Accordingly, PML-NI is deemed to have significantly dif-
ferent performance to one comparing algorithm if their
average ranks differ by at least one CD (CD = 1.3623 in
our experiment: # comparing algorithms & = 7, # data
sets N = 35). Figure 2 shows the CD diagrams ( [51])
on each evaluation metric, where the average rank of each
comparing algorithm is marked along the axis (lower ranks
to the right). In each subfigure, any comparing algorithms
whose average rank is within one CD to that of PML-NI

CD = qa (16)

figure, it can be observed that: 1) PML-NI achieves the best
(lowest) average rank in terms of all evaluation metrics and
significantly outperforms the comparing methods in terms
of one-error and average precision; 2) PML-NI is significantly
better than the comparing methods other than PMLLRS in
terms of ranking loss and coverage; 3) PML-NI is significantly
better than the comparing methods other than PARVLS
and PARMAP in terms of hamming loss. These experimental
results convincingly validate the significance of the superi-
ority for our PML-NI approach.

5.1.3 Sensitive Analysis

In this section, we study the influences of three balancing
parameters, A, 3 and v for the proposed approach on the
real-world data sets. We conducted experiments by varying
one parameter while keeping the other two parameters
fixed. Due to the page limit, we only show the experimental
results which are measured by the five evaluation metrics
on real-world data set music_emotion in Figure 3, while
the results on real-world data set music_style are reported
on supplementary materials. As we can see, in general,
performance is not sensitive to the parameters except for
the parameter )\, whose performance will be significantly
degraded when the value of )X is too large (approximates to
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Fig. 2. Comparison of PML-NI (control algorithm) against five comparing algorithms with the Bonferroni-Dunn test. Algorithms not connected with
PML-NI in the CD diagram are considered to have a significantly different performance from the control algorithm (CD = 1.3623 at 0.05 significance

level).
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Fig. 3. Results of PML-NI with varying value of trade-off parameters on music_emotion.

100 in the experiment). Therefore we can safely set them in
a wide range in practice.

5.2 Study on MIPML Data
5.2.1 Experimental Setting

MIPML is a new learning framework and there is no method
designed specifically for MIPML problems. To show effec-
tiveness of the proposed MIPML-NI ? method, we compare
with multi-instance multi-label methods, which treat all
candidate labels as relevant. The following state-of-art meth-
ods are compared: MIMLfast [38], ERAMIMLNNmetric [52],
KISAR [37], DBA [32], MIML-kNN [33] and MIMLSVM [11].
For MIPML-NI, parameter \ is selected from {1, 10,100} by
3-fold cross validation, and the other two parameters are
set 8 = 0.5 and v = 0.5, respectively. In our experiments,
although the parameter ) is determined by cross validation,
the algorithm is generally not very sensitive to the parame-
ter and it tends to obtain decent performance with a default
value, such as A = 10. For the other comparing methods,
parameters are determined in the same way if no default
value given in their literature.

We perform the experiments on totally 7 data sets.
Among them, Scene and Reuters are two benchmark datases
which are often used in MIML tasks. Scene [53] contains 2000

3.Source code available at:

MIPMLNIcode.zip

http:/ /milkxie.github.io/code/

images for scene classification with 5 possible class labels.
Reuters is constructed by using Reuters-21578 data set [54].
Corel5K consists 5000 images and 260 class labels for image
classification. The other data sets can be found in [36]. Letter
Frost and Letter Carroll are constructed based on the UCI
Letter Recognition dataset [55]. Bird Song is constructed for
bird audio classification. MSRC 02 is constructed by using a
subset of the Microsoft Research Cambridge (MSRC) image
dataset [56].

To construct MIPML data sets based on multi-instance
multi-label data, we simulate the annotation process by
using a MIMLSVM classifier trained on original supervised
MIML data sets as the human annotator. Specifically, a
MIMLSVM classifier is firstly trained on the MIML data
set. Then, for each instance x; of the data set, we add
irrelevant noisy labels of x; with a% number of ground-
truth labels according to their probabilities to be relevant
labels predicted by the MIMLSVM classifier and a% is
varied in the range of {50%, 100%, 150%}.

5.2.2 Comparison Results

Similar to section 5.1.2, Table 4 and 5 illustrate detailed
results of each comparing method in terms of ranking loss
and average precision, while similar results can be observed
in terms of other evaluation metrics. As shown in the table,
it can be observed that our method MIPML-NI achieves
the best performance in most cases. Among six compar-
ing methods, KISAR shows some superiority and achieves
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TABLE 4
Experimental results of each comparing approach in terms of ranking loss, where e/o indicates whether MIPML-NI is superior/inferior to the other
method.
Data % PML-NI MIML fast EnMIMLNNmetric KISAR DBA MIML-kNN ~ MIMLSVM
50% 163 £.029 | .195+£.017e .199 + .026e 200 4+ .024e¢ 796 £+ .073e¢  .253 + .039e¢  .250 £ .044e
letterF 100% | .185 £ .020 | .219 £ .025e 215 £ .024e .223 4+ .046e  .796 £+ .036e  .265 1 .040e  .242 £ .020e
150% | .197 +£.032 | .255 £ .015e .256 £ .008e .239 + .037e  .824 £ .030e  .288 + .015e  .238 £ .020e
50% .160 £ .057 | .202 £ .034e .205 £ .025e 199 + .028e¢  .852 + .038e¢  .237 4 .036e  .257 £ .033e
letterC 100% | .178 £.025 | .224 £ .046e 239 £ .017e 193 +.037e  .844 4+ .032¢  .273 £+ .042e¢  .255 + .014e
150% | .181 +.024 | .237 £ .035e .256 £ .009e 214 4+ .019¢  .845+ .037e  .313 4 .042¢ .241 + .021e
50% 105+ .015 | .174 £ .013e 124 + .016e 118 +.018e¢  .679 £.037e¢  .188 + .012¢  .115 £ .017e
MSRC 100% | .118 +.008 | .184 & .024e 152 4+ .014e .126 & .010e  .664 £ .040e  .193 £ .020e .118 £ .019
150% | .138 +.014 | .202 £ .038e .203 + .008e 137+ .0140  .672 4 .036e  .224+ .018e  .121 £+ .0160
50% .020 £.003 | .045 % .003e .029 £ .004e .022 +.004e  .075+.007e .028 £.003e  .034 £ .009e
Reuters 100% | .023 £.003 | .050 £ .006Ge .041 £ .005e .023 +.0030 .073+.008e¢ .032+ .004e .036 £ .009e
150% | .029 £ .007 | .071 £ .005e .083 & .005e .031 £+ .004e  .093 & .014e  .043 £ .006e .063 & .01lle
50% .071 £ .012 | .271 £ .040e 161 £ .024e .080 £ .008e  .478 +.010e .076 £.010e .193 &+ .014e
Bird Song | 100% | .080 £ .013 | .306 £ .043e .188 + .028e .081+ .014e¢  .491 4+ .011le .082 + .006e .205 + .025e
150% | .088 & .006 | .302 £ .043e .239 £ .005e .095 4+ .011e  .487 £ .044e  .097 &+ .012e¢  .224 + .016Ge
50% .181+.010 | .261 £ .024e .248 + .008e .182 4+ .006e  .362 £ .015e¢  .195+ .006e  .224 + .018e
Scene 100% | .190 £ .008 | .249 £ .026e 272 £+ .010e 193 4+ .020e  .364 £ .019e¢  .213 4+ .015e¢  .228 £+ .011le
150% | .203 £ .017 | .274 £ .017e .330 £+ .011e .268 £+ .016e  .383 & .026e  .239 £ .005e¢  .310 % .006e
50% .142 4+ .006 | .146 4+ .007e .229 4+ .004e 2334+ .009e¢  .884 £ .006e  .182 % .005e  .228 £ .009e
Corel5K 100% | .150 & .002 | .155 £ .003e 2563 £.007e .248 4+ .006e  .879 £ .004e  .196 &+ .010e  .238 £ .003e
150% | .154 4+ .012 | .164 + .004e .273 + .006e .261 + .006e  .882 £ .007e¢  .198 + .008e¢  .253 £ .004e
TABLE 5

Experimental results of each comparing approach in terms of average precision, where e/o indicates whethe
other method.

r MIPML-NI is superior/inferior to the

Data a% PML-NI MIML fast EnMIMLNNmetric KISAR DBA MIML-KkNN MIMLSVM
50% 670 £.049 | .591 + .023e 599 + .029e .632 + .059e .313 £+ .067e 531 + .046e 517 £+ .064e
letterF 100% | .630 £ .048 | .560 £ .051e 572 £+ .038e .595 + .060e .319 £ .046e 518 £ .044e 1491 + .020e
150% .604 + .054 518 £+ .045e 502 + .032e .546 + .067e 282 + .021e 457 + .062e 442 + .029e
50% 648 +.100 | .571 & .028e 584 + .033e .607 & .029e 287 + .025e 537 £ .054e 497 + .038e
letterC 100% | .633 £ .047 | .551 + .066e .541 £ .038e .602 £ .058e .282 + .023e .484 + .063e .486 + .040e
150% | .594 £ .063 | .534 + .054e 485+ .011e .544 + .031e .298 + .034e 432 + .055e 483 + .033e
50% .708 + .026 581 £+ .015e .697 £ .037e .687 £ .043e 1415 £+ .033e .560 £ .018e 702 + .027e
MSRC 100% | .701 £ .014 | .577 £ .045e .630 £+ .029e .662 £+ .019e 427 £+ .037e .553 £ .044e .696 + .018e
150% .665 + .031 .550 £ .040e .568 £+ .026e .648 £ .042e 415 £ .031e 521 £ .032e .690 £ .0200
50% .961 £ .005 1922 £+ .007e .946 £+ .007e .955 £+ .007e .914 £+ .006e .951 £ .007e .933 £ .018e
Reuters 100% .957 £+ .005 914 £+ .011e .932 + .010e .954 + .007e .924 + .005e .948 + .008e 933+ .011e
150% | .948 + .011 .887 £ .006e .861 £ .007e .942 + .006e .902 £+ .010e .931 £ .007e .894 + .014e
50% .856 £+ .026 | .508 + .043e 710 £ .031e .850 £ .014e 468 £ .034e .855 £+ .013e .614 £+ .027e
Bird Song | 100% | .831+.020 | .478 & .056e .670 £ .040e .844 + .0260 1452 + .030e .828 + .013e .606 = .039e
150% | .833 £ .009 | .492 + .057e .602 £ .024e .816 £ .020e 474 £+ .062e .812 £+ .019e .607 £ .019e
50% 781 £+ .010 | .704 + .026e 715 £+ .010e .780 £ .009e .640 £+ .012e .766 £ .005e 734 + .018e
Scene 100% 772+ .014 711 £ .031e .690 £ .015e 769 £ .020e .638 £ .019e 756 &+ .017e .731 £ .006e
150% | .758 +.015 .689 £+ .017e .635 £+ .013e .688 £ .012e .626 £+ .016e 722 + .012e .648 £+ .007e
50% .399 £+ .006 | .308 + .004e .307 £ .003e .346 + .007e .076 & .003e .339 + .009e .324 + .009e
Corel5K 100% | .396 £ .008 | .300 &+ .005e 277 £ .010e .336 £ .006e .079 £ .003e .326 £ .020e .317 £ .006e
150% .384 + .008 .297 £+ .010e 252 + .012e .325 + .005e .077 £+ .005e .323 + .012e .306 £ .009e

TABLE 6 than MIPML-NI on MSRC, where MIMLSVM outperforms

Friedman statistics F in terms of each evaluation metric and the
critical value at 0.05 significance level ( # comparing algorithms k = 7,
# data sets N = 21).

Evaluation metric Fr critical value
Hamming Loss 19.8580

Ranking loss 40.2341

One Error 28.2155 2.4876
Coverage 98.5029

Average Precision 54.4304

better performances with two cases in terms of ranking loss
on MSRC and Reuters, respectively, as well as one case on
Bird song in terms of average precision, while loss for the
other cases. MIMLSVM achieves comparable performance

MIPML-NI with two cases in terms of ranking loss and
average precision, respectively, and is comparable to MIPML-
NI with one case, while loss for other cases.

Furthermore, the Friedman test and post-hoc Bonferroni-
Dunn are employed to statistically analyze the relative per-
formance among the comparing approaches, respectively.
Table 6 reports the Friedman statistics Fi» in terms of each
evaluation metric (# comparing algorithms & = 7, # data
sets N = 21). From the table, it can be observed that the
null hypothesis of indistinguishable performance among the
comparing algorithms is clearly rejected at 0.05 significance
level. Figure 4 illustrate the CD diagrams on each evaluation
metric (CD = 1.7587 in our experiment: # comparing algo-
rithms k = 7, # data set N = 21). From the figure, it can be
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MIMLfast L MIMLSWM
d) Coverage e) Average precision

Fig. 4. Comparison of MIPML-NI (control algorithm) against five comparing algorithms with the Bonferroni-Dunn test. Algorithms not connected
with MIPML-NI in the CD diagram are considered to have a significantly different performance from the control algorithm (CD = 1.7587 at 0.05

significance level).

observed that MIPML-NI achieves the best (lowest) average
rank and significantly outperforms the comparing methods
other than KISAR in terms of all evaluation metrics.

6 CONCLUSION

In this paper, we disclose the phenomenon that noise labels
are usually caused by some ambiguous contents of the
example. Based on this observation, we extend our prelim-
inary research [57], and propose to learn partial multi-label
problems in a novel strategy by exploiting the potential con-
nections between noisy labels and feature contents. Under
the supervision of the observed label matrix, the proposed
PML-NI approach jointly learn the multi-label classifier and
noisy label identifier by incorporating the label correlation
exploitation and feature-induced noise model. Consider-
ing multi-instance partial-labeled data, we propose a new
learning framework called multi-instance partial multi-label
learning (MIPML) and further extend PML-NI into MIPML
setting by identifying noisy labels based on ambiguous
instances. Theoretical analysis as well as experiments results
validate that the proposed approaches are superior to state-
of-the-art approaches. In the future, we plan to improve
the PML-NI method by considering various forms of noisy
labels and utilizing more powerful learning models.
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