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CCMN: A General Framework for Learning with
Class-Conditional Multi-Label Noise

Ming-Kun Xie and Sheng-Jun Huang

Abstract—Class-conditional noise commonly exists in machine learning tasks, where the class label is corrupted with a probability
depending on its ground-truth. Many research efforts have been made to improve the model robustness against the class-conditional
noise. However, they typically focus on the single label case by assuming that only one label is corrupted. In real applications, an instance
is usually associated with multiple labels, which could be corrupted simultaneously with their respective conditional probabilities. In this
paper, we formalize this problem as a general framework of learning with Class-Conditional Multi-label Noise (CCMN for short). We
establish two unbiased estimators with error bounds for solving the CCMN problems, and further prove that they are consistent with
commonly used multi-label loss functions. Finally, a new method for partial multi-label learning is implemented with the unbiased
estimator under the CCMN framework. Empirical studies on multiple datasets and various evaluation metrics validate the effectiveness of
the proposed method.

Index Terms—Class-conditional noise, class-conditional multi-label noise, unbiased estimator, partial multi-label learning.
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1 INTRODUCTION

In ordinary supervised classification problems, a common
assumption is that the class labels of training data are always
correct. However, in practice, the assumption hardly holds
since the training examples are usually corrupted due to
unavoidable reasons, such as measurement error, subjective
labeling bias or human labeling error. Learning in presence
of label noise has been a problem of theoretical as well as
practical interest in machine learning communities [1]. In
various applications, such as the image annotation [2] and
text classification [3], many successful methods have been
applied to train robust models against label noise.

In general, to deal with noise-corrupted data, it is crucial
to discover the causes of label noise. A natural and simple
formulation of label noise is that the labels are corrupted by a
random noise process, which can be described by the random
classification noise (RCN) framework [4]. RCN framework
assumes that each label is flipped independently with a
specific probability ρ ∈ [0, 1

2 ). Despite the great impact that
RCN framework has made, it is too simple to deal with
practical tasks, where the cause of label noise may not follow
a random process. In order to deal with such problems, in [5],
[6], authors propose a class-conditional random label noise
(CCN) framework, where the probability of a label flipping
depends on its true label. Unfortunately, CCN framework
only considers single label case and fails to deal with multi-
label noise, where multiple labels assigned to one instance
may be corrupted simultaneously.

In this paper, we extend CCN to a more general frame-
work of Class Conditional Multi-label Noise (CCMN) to
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learn with multi-class and multi-label classification tasks.
In CCMN framework, each instance is associated with
multiple labels and each of class labels may be flipped with
a probability ρj+1 or ρj−1, which depends on its true label
yj ∈ {+1,−1}. It is noteworthy that a great deal of real-
world applications in weakly-supervised settings [7] can
be regarded as special cases of this framework. Examples
include learning from partial-labeled data [8], [9], [10] or
multi-label learning with missing labels [11], [12], which we
will discuss detailedly in the following content. To the best
of our knowledge, general theoretical results in this setting
have not been developed before.

To tackle corrupted data with class-conditional multiple
noisy labels, we derive a modified loss function for learning
a multi-label classifier with risk minimization. Theoretically,
we show that the empirical risk minimization with the
modified loss functions can be in an unbiased fashion from in-
dependent and dependent perspectives. We then provide the
estimation error bound for the two unbiased estimators and
further show that learning with class-conditional multiple
noisy labels can be multi-label consistent to two commonly
used losses, i.e., hamming loss and ranking loss, respectively.
Finally, CCMN can be regarded as a general framework of
various weakly-supervised learning scenarios, such as partial
label learning [8], partial multi-label learning [9] and weak
label learning [11]. Among them, we take PML as an example,
and propose a new approach for partial multi-label learning
with unbiased estimator. Comprehensive empirical studies
demonstrate the effectiveness of the proposed methods.

Our main contributions are summarized as follows:

• A general framework of learning from class-conditional
multi-label noise is proposed. Varied weakly-supervised
learning scenarios can be cast under CCMN framework.

• We propose two unbiased estimators for solving CCMN
problems in both independent and dependent fashion.
These two estimators are proven to be multi-label con-
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sistent to hamming loss and ranking loss, respectively.
• A novel approach for Partial Multi-label Learning with

unbiased estimator (uPML) is proposed under the
CCMN framework.

2 RELATED WORK

There are a great deal of previous works aiming to learn a
robust classification model in presence of label noise. Most
of these methods only consider single label case and cannot
tackle class-conditional multi-label noise.

There has been a long line of studies in machine learning
community on random label noise. The earliest work by
Angluin and Laird [4] first proposes the random classification
noise (RCN) model. In [13], authors propose a boosting-based
method and empirically show its robustness to random label
noise. A theoretical analysis proposed in [14] proves that
any method based on convex surrogate losses is inherently
ill-suited to random label noise. Noise-tolerance property
examines the robustness against label noise of a loss function
[15]. Besides, there are many other heuristic methods without
theoretical justification [16], [17]. Label noise often appears
in crowdsourcing annotation settings [18].

The first attempt to tackle class-conditional label noise
is proposed in [5] where authors propose a variant of
SVM to handle noisy labels with theoretical guarantee. In
[6], authors propose unbiased estimators to solve class-
conditional label noise in the binary classification setting.
Based on the assumption that class-conditional distributions
may overlap, a method called mixture proportion estimation
is proposed in [19] to estimate the maximal proportion of one
distribution that is present in another. Furthermore, authors
extend the method into multi-class setting in [20].

Thanks to the great development of deep learning,
there are various methods raised for utilizing deep neural
networks to handle noisy labels, such as label correction
methods [21], [22], loss correction methods [23], [24], sample
reweighting methods [25], [26], [27], and robust loss methods
[28], [29].

In this paper, we also employ the CCMN framework
to solve partial multi-label learning problems [9]. In order
to deal with partial-labeled data, the most commonly used
strategy is disambiguation, which recovers ground-truth
labeling information for candidate labels. Some methods
perform the disambiguation strategy by estimating a confi-
dence for each candidate label [30], [31], [32]. Other methods
utilize decomposition scheme [33] or adversarial training
[34]. Besides, the label compression technique is utilized
to deal with the large label space in PML tasks [35]. Meta
disambiguation is proposed in [36] to learn partial labels in a
meta learning fashion. However, aforementioned methods
never consider the generation process of noisy labels in
the candidate label set, which is an essential information
for solving PML problems. In [37], authors first consider
modeling the relationship between noisy labels and feature
representations. Some studies aim to extend the PML frame-
work to novel settings, such as semi-supervised learning
[38] and multi-view learning [39]. Different from existing
works, which use the disambiguation strategy to solve PML
problems, we attempt to develop a modified loss function
for learning from partial labels in an unbiased fashion with
theoretical guarantee.

3 FORMULATION OF CCMN
Let x ∈ X be a feature vector and y ∈ Y be its corresponding
label vector, where X ⊂ Rd is the feature space and Y ⊂
{−1, 1}q is the target space with q possible class labels. For
notational convenience, the label yj can be denoted by its
index j. In the setting, yj = 1 indicates the j-th label is a
true label for instance x; yj = −1, otherwise. In this paper,
we focus on the multi-label learning problem, where each
instance may be assigned with more than one label, i.e.,∑q
j=1 I(yj = 1) ≥ 1 holds, where I is the indicator function.

Let S = {(x1,y1), ..., (xn,yn)} be the given training data
set, drawn i.i.d. according to the true distribution D. We also
use [q] to denote the integer set {1, ..., q}.

In this paper, for instance x, its corresponding label y
can be corrupted and may be flipped into ỹ following a
class-conditional multi-label noise model as follows:

p(ỹj = −1|yj = +1) = ρj+1,

p(ỹj = +1|yj = −1) = ρj−1,

∀j ∈ [q], ρj+1 + ρj−1 < 1.

where ρj+1 and ρj−1 are noise rates for each class label and
are assumed to be known to the learner. The constraint
ρj+1+ρj−1 < 1 is a necessary condition to derive the unbiased
estimator for a specific loss function which will be clear in
the later section. In section 6, we will discuss how to estimate
true noise rates in detail.

After injecting random noise into original samples S, the
observed data set Sρ = {(x1, ỹ1), ..., (xn, ỹn)} are drawn
i.i.d., according to distribution Dρ. Our goal is to learn a
prediction function h : X → Y can accurately predict labels
for any unseen instance. In general, it is not easy to learn h
directly, and alternatively, one usually learns a real-valued
decision function f : X → Rq . Note that, for each instance
x, even though its final prediction depends on h(x), we also
call f itself the classifier. As mentioned before, CCMN can be
used to solve multi-class and multi-label learning problems.
In this paper, we focus on the multi-label classification task
without loss of generality.

In general, CCMN framework has implications in varied
real-world applications. In the following content, we discuss
on two popular weakly-supervised learning scenarios, i.e.,
partial multi-label learning and weak label learning, which
can be regarded as special cases of CCMN framework.

In PML problems, each instance is associated with a
candidate label set Yc, which contains multiple relevant labels
and some other noisy labels (i.e., irrelevant labels). One
intuitive strategy to solve the task is that treats all labels in
Yc as relevant labels and transforms Yc into Ỹ . Here, we use
Ỹ , since there may exist irrelevant labels in Ỹ . Then, a new
training set is obtained, where each instance is associated
with the label set Ỹ . Besides relevant labels, Ỹ is also injected
into some irrelevant labels, which can be regarded as class-
conditional multi-label noise, i.e., irrelevant labels are flipped
into relevant labels with ρj−1 > 0 while ρj+1 = 0.

In weak label learning, also known as multi-label learning
with missing labels, only a subset of labels are known for
each instance. Specifically, each instance is associated with
a relevant label set Y+1 while Ỹ−1 is the irrelevant label set.
Here, we use Ỹ−1, since there may exist missing labels in Ỹ−1,
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i.e., relevant labels are missed. Similarly, one can treat all
labels in Ỹ−1 as irrelevant labels. Therefore, besides irrelevant
labels, Ỹ−1 is also injected into some relevant labels which
can be regarded as class-conditional multi-label noise with
ρj+1 > 0 while ρj−1 = 0.

4 LEARNING WITH CCMN
In this section, we first provide some necessary preliminaries,
and then derive two CCMN solvers for independent and
dependent cases. In the independent case, we solve each bi-
nary classification task of the CCMN problem independently
while in the dependent case, we solve the CCMN problem
by considering label correlations.

4.1 Preliminaries
To derive our results for solving CCMN problems, we
introduce some notations and the property of multi-label
consistency.

There are many multi-label loss functions (also called eval-
uation metrics), such as hamming loss, ranking loss, coverage
and average precision [40], etc. In this paper, we focus on two
well known loss functions, i.e., hamming loss and ranking
loss, and leave the discussions on other loss functions in the
future work.

The hamming loss considers how many instance-label
pairs are misclassified. Given the decision function f and
prediction function F , the hamming loss can be defined by:

Lh(F (f(x)),y) =
1

q

q∑
j=1

I(ŷj 6= yj), (1)

where ŷ = F (f(x)) = [ŷ1, ..., ŷq].
The ranking loss considers label pairs that are ordered

reversely for an instance. Given a real-value decision function
f = [f1, f2, ..., fq], the ranking loss can be defined by:

Lr(f ,y) =
∑

1≤j<k≤q
I(yj < yk)`(j, k) + I(yj > yk)`(k, j),

(2)
where

`(j, k) = I(fj > fk) +
1

2
I(fj = fk).

The risk of f with respect to loss L is given by
R(f) = E(x,y)∼D[L(f(x),y)] and the minimal risk (also
called the Bayes risk) can be defined by R∗ = inff R(f). For
an instance x, the conditional risk of f can be defined as

l(p,f) =
∑
y∈Y

pyL(f ,y),

where py = [p(y|x)]y∈Y is a vector of conditional probability
over y ∈ Y .

Note that the above mentioned two loss functions are
discontinuous and computationally NP-hard, which makes
the corresponding optimization problem hard to solve. In
practice, a feasible solution is to consider alternatively a
surrogate loss function L, which can be optimized effi-
ciently. We will give the specific definition of L in the
next section. The L-risk and Bayes L-risk can be defined
as RL(f) = E(x,y)∼D[L(f(x),y)] and R∗L = inff RL(f),
respectively. Accordingly, we define the empirical L-risk
asR̂L(f) = 1

n

∑n
i=1 L(f(xi),yi).

Furthermore, we define the conditional L-risk of f

W (p,f) =
∑
y∈Y

pyL(f ,y),

and the conditional Bayes L-risk

W ∗(p) = inf
f
W (p,f).

Our goal is to learn a good classification model with the
modified loss function L̃(f(x), ỹ) from noise-corrupted data
by minimizing empirical L̃-risk:

f̂ = arg min
f∈F

R̂L̃(f),

where F is a function class.

4.2 Independent Case

In order to solve multi-label learning problems, the most
straightforward method is to decompose the task into q
independent binary classification problems [41], where the
goal is to learn q functions, f = (f1, f2, ..., fq). However,
as mentioned before, it is difficult to directly optimize the
hamming loss due to its discontinuity. Alternatively, we
consider the following surrogate loss

Lh(f(x),y) =

q∑
j=1

φ(yjfj(x)), (3)

where φ is a convex loss function. The common choices are
least square loss φ(t) = (1−t)2 and hinge loss φ(t) = (1−t)+

in [42].
The modified loss function under class-conditional multi-

label noise in the independent case can be defined as follows:

L̃h(f(x), ỹ) =

q∑
j=1

φ̃(yjfj(x)), (4)

where,

φ̃(yjfj) = κj
[
(1− ρ−yj )φ(yjfj)− ρyjφ(−yjfj)

]
.

Here, κj = 1
1−ρj+1−ρ

j
−1

is a constant and we omit the

superscript j of ρyj .
We extend the results in [6] to have the following lemma,

which shows unbiasedness of the estimator defined by Eq.(4).

Lemma 1. For any yj ,∀j ∈ [q], let φ(yjfj(x)) be any bounded
loss function. Then, if L̃h(f , ỹ) can be defined by Eq.(4), we have
Eỹ
[
L̃h(f , ỹ)

]
= Lh(f ,y).

Let σ = {σ1, ..., σn} be n Rademacher variables with
σi independently uniform random variable taking value in
{−1,+1}. Then, the Rademacher complexity with respect to
function class F and unbiased estimator L̃ can be formulated
as follows:

Rn(L̃ ◦ F) = Ex,ỹ,σ

[
sup
f∈F

1

n

n∑
i=1

σiL̃(f(xi), ỹi)

]
.

Accordingly, the performance guarantee for the unbiased
estimator can be derived as following theorems.
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Theorem 1. Let µ = maxj
1

1−ρj−1−ρ
j
+1

,∀j ∈ [q]. Then, for the

loss function φ(·) bounded by Θ, with probability at least 1− δ,
we have

RLh(f̂)−min
f∈F

RLh(f) ≤ 4qKρRn(F) + 2qµΘ

√
ln 1

δ

2n
,

where f̂ is trained by minimizing R̂L̃h(f) and Kρ is the Lipschitz
constant of L̃h.

Theorem 2. If φ is convex function with φ′(0) < 0, then learning
from CCMN examples with the modified surrogate loss L̃h defined
by Eq.(4) is consistent w.r.t hamming loss, i.e., there exists a
non-negative concave function ξ with ξ(0) = 0, such that

RLh(f̂)−R∗Lh ≤ ξ(RLh(f̂)−R∗Lh).

As shown in Theorem 1, the generalization error is
dependent to the noise rates ρ−1 and ρ+1. It is intuitive
that smaller noise rates lead to a better generalization
performance owing to a smaller µ. By combining Theorem
1 with Theorem 2, we obtain a performance guarantee
for learning from class-conditional multiple noisy labels
with respect to hamming loss. As n → ∞, we have the
consistency: if RLh(f̂n) → R∗Lh (as shown in Theorem 1),
then RLh(f̂n) → R∗Lh , since Rn(F) → 0 for all parametric
models with a bounded norm such as deep networks trained
with weight decay [43].

4.3 Dependent Case
In multi-label learning problems, a common assumption is
that there exist label correlations among labels [12], [44].
Therefore, it is fundamental to learn with class-conditional
multi-label noise in a dependent fashion. The ranking loss
considers the second-order label correlation and its surrogate
loss is commonly defined as

Lr(f(x),y) (5)

=
∑

1≤j<k≤q
I(yj > yk)φ(fjk) + I(yj < yk)φ(fkj)

=
∑

1≤j<k≤q
φ(yjk(fj − fk)),

where yjk =
yj−yk

2 and fjk = fj − fk.
If yj 6= yk, let

a = (1− ρj−yjk)(1− ρkyjk), b = ρjyjkρ
k
−yjk ,

and if yj = yk, let

c = ρjyj (1− ρ
k
−yk), d = ρkyk(1− ρj−yj ).

Then, the modified loss function under class-conditional
multi-label noise in the dependent case can be defined as

L̃r(f(x),y) =
∑

1≤j<k≤q
φ̃((fj , fk), (yj , yk)), (6)

where φ̃((fj , fk), (yj , yk)) can be abbreviated by φ̃(j, k),

φ̃(j, k) =

{
κjk [aφ(yjkfjk) + bφ(−yjkfjk)] if yj 6= yk

− κjk [cφ(−yjfjk) + dφ(yjfjk)] if yj = yk

Here, κjk = 1
(1−ρj+1−ρ

j
−1)(1−ρk+1−ρk−1)

is a constant.

The unbiasedness of the estimator defined by Eq.(6) can
be shown as the following lemma.

Lemma 2. For any yj , yk,∀j, k ∈ [q], let φ(·) be any bounded
loss function. Then, if L̃r(f , ỹ) can be defined by Eq.(6), we have
Eỹ
[
L̃r(f , ỹ)

]
= Lr(f ,y).

Accordingly, the performance guarantee for the unbiased
estimator can be derived as following theorems.

Theorem 3. Let µ = maxj
1+|ρj−1−ρ

j
+1|

(1−ρj−1−ρ
j
+1)2

,∀j ∈ [q]. Then, for

the loss function φ(·) bounded by Θ, with probability at least 1−δ,
we have

RLr (f̂)−min
f∈F

RLr (f)

≤ 4q(q − 1)KρRn(F) + 2q(q − 1)µΘ

√
ln 1

δ

2n
,

where f̂ is trained by minimizing R̂L̃r (f) and Kρ is the Lipschitz
constant of L̃r.

Theorem 4. If φ is a differential and non-increasing function with
φ′(0) < 0 and φ(t)+φ(−t) = 2φ(0), then learning from CCMN
examples with the modified surrogate loss L̃r defined by Eq.(6)
is consistent w.r.t ranking loss, i.e., there exists a non-negative
concave function ξ with ξ(0) = 0, such that

RLr (f̂)−R∗Lr ≤ ξ(RLr (f̂)−R∗Lr ).
From Theorem 3, it can be observed that besides the noise

rates ρ−1 and ρ+1, the generalization error is also dependent
to the difference between noise rates, i.e., |ρ−1 − ρ+1|. Gener-
ally, a smaller difference also leads to a better generalization
performance owing to a smaller µ. By combining Theorem
3 with Theorem 4, we obtain a performance guarantee
for learning from class-conditional multiple noisy labels
with respect to ranking loss. As n → ∞, we have the
consistency: if RLr (f̂n) → R∗Lr (as shown in Theorem 3),
then RLr (f̂n) → R∗Lr , since Rn(F) → 0 for all parametric
models with a bounded norm such as deep networks trained
with weight decay [43].
Testing Phase. Regarding classifier f̂ trained by minimizing
the loss function L̃h or Lh, for each testing instance xt, we
use the sgn(fj(xt)) to predict its labels, where sgn(a) is a
function which outputs +1 if a >= 0 while outputs −1,
otherwise. Here, we use 0 as a threshold for final prediction.
However, regarding classifier f trained by minimizing the
loss function L̃r or Lr, it is unreasonable to use 0 as a
threshold. Instead, to perform prediction, in training phase,
we introduce a dummy label y0 = 0 for each instance, and
then, in testing phase, the output of the classifier for label y0

is used as the threshold to decide the label assignment for
each instance.

Specifically, for instance x, suppose that its corresponding
label vector can be represented by y = [y0, y1, ..., yq], where
y0 is indexed by 0. In the training phase, the loss L̃0 with
respect to y0 can be calculated as follows:

L̃0(f(x),y) =

q∑
j=1

φ̃(fj0(x), yj0), (7)

where fj0(x) = fj(x) − f0(x) and yj0 = yj − y0. Note
that yj0 = yj , since we have y0 = 0. In the situation, the
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formulation of L̃0 is equivalent to Eq.(4) and can be solved
efficiently.

5 PARTIAL MULTI-LABEL LEARNING WITH CCMN
As discussed above, partial multi-label learning (PML) is a
recently proposed framework, and is a typical CCMN task.
In this section, we take PML as an example to examine the
effectiveness of the proposed framework. Specifically, we
propose a new approach for partial multi-label learning with
unbiased estimator (uPML for short). In the PML setting,
the noise rates satisfy ∀j ∈ [q], p(ỹj = +1|yj = −1) =
ρj , p(ỹj = −1|yj = +1) = 0. Here, we omit the subscript of
ρj for notational simplicity. The constraint of noise rates here
becomes ∀j ∈ [q], ρj < 1 is necessary to avoid the situation
that all irrelevant labels are flipped into candidate labels,
which makes the corresponding problem tractable.

Based on the results in Section 4, in the independent
case, the objective function of uPML L̃PML

h can be defined as
follows:

L̃PML
h (f(x),y) =

q∑
j=1

φ̃(yjfj(x)), (8)

where,

φ̃(yjfj(x)) =


φ(−fj(x))− ρjφ(fj(x))

1− ρj
if yj = −1

φ(fj(x)) otherwise

In the dependent case, the objective function of uPML
L̃PML
r can be defined as follows:

L̃PML
r (f(x),y) =

∑
1≤j<k≤q

φ̃(yjkfjk(x)), (9)

where,

φ̃(yjkfjk) =


φ(fjk)
1−ρk if yjk = +1
φ(−fjk)

1−ρj if yjk = −1
−ρjφ(fjk)−ρkφ(−fjk)

(1−ρj)(1−ρk)
if yj = yk = −1

0 if yj = yk = +1

We derive the generalization error bound for the pro-
posed uPML method, which can be regarded as special cases
of Theorem 1 and 3.

Corollary 1. For the least square loss φ(t) = (1 − t)2, with
probability at least 1− δ, we have

RLh(f̂)−min
f∈F

RLh(f) ≤ 4qKρRn(F) +
8q

1− ρmin

√
ln 1

δ

2n
,

where ρmin = minj ρ
j and f̂ is trained by minimizing R̂L̃PML

h
(f),

and

RLr (f̂)−min
f∈F

RLr (f)

≤ 4q(q − 1)KρRn(F) + 8q(q − 1)µ

√
ln 1

δ

2n
,

where µ = minj
1+ρj

(1−ρj)2 and f̂ is trained by minimizing
R̂L̃PML

r
(f).

It is easy to prove the consistency of the proposed uPML
method based on the results derived in previous sections.

To the best of our knowledge, uPML is the first consistent
method for solving PML problems. The similar method can
be derived to solve weak label learning problems with slight
modifications.

6 NOISE RATE ESTIMATION

In the aforementioned discussions, the noise rates ρ are as-
sumed to be known. However, in many real-world scenarios,
the true noise rates ρ would be unknown and need to be
estimated. In this section, we provide an efficient method
to estimate ρ, which is a multi-label extension of the recent
noise estimator [23], [45].

When learning with class-conditional multiple noisy
labels, the information of ground-truth labels is no longer
accessible by the learner. Without any extra information, it
is impractical to estimate the true noise rates. Based on the
two assumptions, we propose to estimate the noise rates for
CCMN as following theorem.

Theorem 5. Assume p(x,y) is such that:
(1) For each label yj ,∀j ∈ [q], there exist anchor points in the

sense that

∃x̄jl ∈ X , p(x̄
j
l ) > 0 ∧ p(yj = l|x̄jl ) = 1, l ∈ {+1,−1}.

(2) Given sufficiently many corrupted training examples, f 1 is
rich enough to model p(ỹj = l|x) accurately.

It follows that ∀j ∈ [q], l ∈ {−1,+1}, ρjl = p(ỹj = −l|x̄jl ).

Proof. For any j ∈ [q] and any x ∈ X , we have:

p(ỹj = l|x) = ρj−lp(yj = −l|x) + (1− ρjl )p(yj = l|x).

Given condition (1), when x = x̄jl , we have p(yj = l|x̄jl ) =
1, which means ρjl = p(ỹj = −l|x̄jl ).

Theorem 5 tells us that noise rates can be estimated based
on posterior probabilities of noisy labels, i.e., the sigmoid
outputs of a network trained on noisy labels. In particular, as
shown in [23], it even dose not require these examples to have
any clean labels at all. Specifically, ∀j ∈ [q], l ∈ {+1,−1},
the noise rate ρjl can be approximated by two procedures:

x̄lj = arg max
x∈Sρ

p̂(ỹj = l|x)

ρ̂jl = p̂(ỹj = −l|x̄j),

where p̂(ỹj |x) is the sigmoid output and can be regarded as
an estimation of class-conditional probabilities p(ỹj |x).

In practice, it would satisfy assumption (1) of Theorem 5
when the noisy training set Sρ is large enough. However, it
is more difficult to justify assumption (2) of Theorem 5, since
the true class-conditional probability is unknown. In our
experiments, it can be observed that the proposed methods
obtain promising performance based on the estimated noise
rates, which examines the effectiveness of the proposed
estimator.

7 PROOF

In this section, we provide detailed proofs of the theorems
derived in previous sections.

1. Note that f(·) passes through the sigmoid function 1/(1 + e−fj(x)),
which can be interpreted as a vector approximating the class-conditional
probabilities p(y|x)
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7.1 Proof of Lemma 1
It is straightforward to show the unbiasedness of L̃h by the
following computations. Recall that here we respectively use
ρj and ρ−j to denote ρyj and ρ−yj , then we have

Eỹ
[
L̃h(f , ỹ)

]
=

q∑
j=1

(1− ρj)˜̀(fj , yj) + ρj ˜̀(fj ,−yj)

=

q∑
j=1

κj{(1− ρj)[(1− ρ−j)`(fj , yj)− ρj`(fj ,−yj)]

+ ρj [(1− ρj)`(fj ,−yj)− ρ−j`(fj , yj)]}

=
K∑
j=1

κj(1− ρj − ρ−j)`(fj , yj) = Lh(f ,y),

which completes proof.

7.2 Proof of Theorem 1
The proof is mainly composed of the following two lemmas.

Lemma 3. Let Rn(L̃h ◦ F) be the Rademacher complexity of L̃h
and F over Sρ with n training points drawn from Dρ, which can
be defined as

Rn(L̃h ◦ F) = ESρEσ

[
sup
f∈F

1

n

n∑
i=1

σiL̃h(f(xi), ỹi)

]
.

Then,
Rn(L̃h ◦ F) ≤ qKρRn(F),

where Kρ is the Lipschitz constant of L̃h.

Proof. Recall that L̃h(f(x),y) =
∑q
j=1 φ̃(yjfj(x)), then, we

have

Rn(L̃h ◦ F)

= ESρEσ

 sup
f1,...,fq∈F

1

n

n∑
i=1

σi

q∑
j=1

φ̃(y
(i)
j fj(xi))


= EXEσ

 sup
f1,...,fq∈F

1

n

∑
xi∈X

σi

q∑
j=1

φ̃(y
(i)
j fj(xi))


≤

q∑
j=1

EXEσ

 sup
fj∈F

1

n

∑
xi∈X

σiφ̃(y
(i)
j fj(xi))


= qRn(φ̃ ◦ F).

Sequentially, according to Talagrand’s contraction lemma
[46], we have

Rn(L̃h ◦ F) ≤ qRn(φ̃ ◦ F)

≤ qKρRn(F),

which completes the proof.

Without loss of generality, assume that ∀j ∈ [q], µ =
maxj

1
1−ρj−1−ρ

j
+1

.

Lemma 4. For any δ > 0, with probability at least 1− δ,

max
f∈F

∣∣∣R̂L̃h(f)−RL̃h(f)
∣∣∣ ≤ 2qKρRn(F) + qµΘ

√
ln 2

δ

2n
.

Proof. Since both two directions can be proved in the same
way, we consider one single direction supf1,...,fq∈F (R̂L̃(f)−
RL̃(f)). Note that the change in xi leads to a perturbation of
at most qµΘ

n by replacing a single point (xi, ỹi) with (x′i, ỹ
′
i),

since the change in any ỹ(i)
j leads to a perturbation as Eq.(10).

By using McDiarmid’s inequality [47] to the single-direction
uniform deviation supf1,...,fk∈F (R̂L̃(f)−RL̃(f)), we have

p

{
sup
f∈F

(R̂L̃(f)−RL̃(f))− E

[
sup
f∈F

(R̂L̃(f)−RL̃(f))

]
≥ ε
}

≤ exp

(
− 2ε2

n( qµΘ
n )2

)
,

or equivalently, with probability at least 1− δ,

sup
f∈F

(R̂L̃(f)−RL̃(f))

≤ E

[
sup
f∈F

(R̂L̃(f)−RL̃(f))

]
+ qµΘ

√
ln 1

δ

2n
.

According to [47], it is straightforward to show that

E

[
sup
f∈F

(R̂L̃(f)−RL̃(f))

]
≤ 2Rn(L̃ ◦ F).

With the lemma 3, we complete the proof.

Based on the Lemma 4, with f∗ = argminf∈FRL,D(f), it
is obvious to prove the generalization error bound as follows:

RL,D(f̂)−RL,D(f∗)

= RL̃,Dρ(f̂)−RL̃,Dρ(f
∗)

=
(
R̂L̃(f̂)− R̂L̃(f∗)

)
+
(
RL̃,Dρ(f̂)− R̂L̃(f̂)

)
+
(
R̂L̃(f∗)−RL̃,Dρ(f

∗)
)

≤ 0 + 2 max
f∈F

∣∣∣R̂L̃(f)−RL̃,Dρ(f)
∣∣∣ .

The fist equation holds due to the unbiasedness of the estima-
tor and for the last line, we used the fact R̂L̃(f̂) ≤ R̂L̃(f∗)

by the definition of f̂ .

7.3 Proof for Theorem 2

Before providing the proof, the definition of multi-label
consistency can be formulated as follows.

Definition 1. [48] Given a below-bounded surrogate loss L,
where L(·,y) is continuous for every y ∈ Y , L is said to be
multi-label consistent w.r.t. the loss L if it holds, for every p, that

W ∗(p) < inf
f
{W (p,f) : f /∈ A(p)},

where A(p) = {f : l(p,f) = inff ′ l(p,f
′)} is the set of Bayes

decision functions.

Based on the definition, the following theorem can be
further established.

Theorem 6. [48] The surrogate loss L is multi-label consistent
w.r.t. the loss L if and only if it holds for any sequence {fn}n≥1

that
if RL(fn)→ R∗L then R(fn)→ R∗.
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1

n

∣∣∣∣∣ (1− ρ
j
−1)φ(fj)− ρj+1φ(−fj)− [(1− ρj+1)φ(−fj)− ρj−1φ(fj)]

1− ρj−1 − ρ
j
+1

∣∣∣∣∣ =
1

n

∣∣∣∣∣φ(fj)− φ(−fj)
1− ρj−1 − ρ

j
+1

∣∣∣∣∣ ≤ µΘ

n
. (10)


αj+1α

k
−1 ρj+1ρ

k
−1 ρj+1α

k
−1 ρk−1α

j
+1

ρj−1ρ
k
+1 αj−1α

k
+1 ρj−1α

k
+1 ρk+1α

j
−1

αj+1ρ
k
+1 ρj+1α

k
+1 ρj+1ρ

k
+1 αj+1α

k
+1

ρj−1α
k
−1 αj−1ρ

k
−1 αj−1α

k
−1 ρj−1ρ

k
−1



φ̃((fj , fk), (+1,−1))

φ̃((fj , fk), (−1,+1))

φ̃((fj , fk), (+1,+1))

φ̃((fj , fk), (−1,−1))

 =


φ(fj − fk)
φ(fk − fj)

φ(0)
φ(0)

 . (11)

where αj+1 = 1− ρj+1 and αj−1 = 1− ρj−1.

φ̃((fj , fk), (+1,−1)) = κjk
[
(1− ρj−1)(1− ρk+1)φ(fjk) + ρj+1ρ

k
−1φ(−fjk)

]
φ̃((fj , fk), (−1,+1)) = κjk

[
(1− ρj+1)(1− ρk−1)φ(−fjk) + ρj−1ρ

k
+1φ(fjk)

]
φ̃((fj , fk), (+1,+1)) = −κjk

[
ρj+1(1− ρk−1)φ(−fjk) + ρk+1(1− ρj−1)φ(fjk)

]
φ̃((fj , fk), (−1,−1)) = −κjk

[
ρj−1(1− ρk+1)φ(fjk) + ρk−1(1− ρj+1)φ(−fjk)

]
. (12)

This theorem tells us that the multi-label consistency is a
necessary and sufficient condition for the convergence of L-
risk to the Bayes L-risk, implyingR(f)→ R∗. Consistency is
the convergence of risk of the learner to the Bayes risk. In the
CCMN framework, the classifier is learned with corrupted
labels, it is thus crucial to examine whether the risk under
noisy labels can converge to the Bayes risk. The proof of
Theorem 2 is presented as follows.

With respect to L̃h, the conditional surrogate loss can be
defined as

W̃ (p,f) = Eỹ[L̃(f(x), ỹ)] =
∑
y∈Y

pyEỹ|y[L̃(f(x), ỹ)]

=
∑
y∈Y

pyL(f(x),y) =

q∑
j=1

∑
y∈Y

pyφ(yjfj(x))

= W (p,f) =

q∑
j=1

p+
j φ(fj(x)) + p−j φ(−fj(x)).

where the second equality is based on the law of total
probability. Here, p+

j =
∑
y:yj=+1 py and p−j =

∑
y:yj=−1 py .

Accordingly, we have

W̃ ∗(p) = W ∗(p) = inf
f
W (p,f) =

q∑
j=1

inf
fj
Wj(p

+
j , fj),

where Wj(p
+
j , fj) = p+

j φ(fj) + p−j φ(−fj). This yields that
minimizing W̃ (p,f) is equivalent to minimizing Wj(p

+
j , fj)

for any j ∈ [q]. The consistency for binary classification has
been well studied [49], [50]. Based on their results, it is easy
to prove that learning from CCMN data with L̃h is consistent
with respect to hamming loss. Therefore, based on Corollary
25 in [51], we have

RLh(f̂)−R∗Lh ≤ ξ(RLh(f̂)−R∗Lh),

where ξ is a non-negative concave function with ξ(0) =
0.

7.4 Proof for Lemma 2
For each instance, regarding each pair of noisy labels (ỹj , ỹk),
there may exist four cases as follows: (ỹj = +1, ỹk = −1),
(ỹj = −1, ỹk = +1), (ỹj = +1, ỹk = +1) and (ỹj =
−1, ỹk = −1). By considering these four cases separately, we
have four linear equations as presented in Eq.(11). Solving
these four equations for φ̃(j, k) gives the solution as shown
in Eq.(12). With simple computation for the four equations,
we obtain the unbiased estimator defined in Eq.(6), which
completes the proof.

7.5 Proof for Theorem 3
We first propose the following two lemmas, which are useful
for proving Theorem 3.

Lemma 5. Let Rn(L̃r ◦ F) be the Rademacher complexity of L̃r
and F over Sρ with n training data drawn from Dρ, which can be
defined as

Rn(L̃r ◦ F) = ESρEσ

[
sup
f∈F

1

n

n∑
i=1

σiL̃r(f(xi), ỹi)

]
.

Then,
Rn(L̃r ◦ F) ≤ 2q(q − 1)KρRn(F),

where Kρ is the Lipschitz constant of L̃r.

Proof. Recalling L̃r(f(x), ỹ) =
∑
j,k φ̃((fj , fk), (yj , yk)), we

have

Rn(L̃r ◦ F)

= ESρEσ

 sup
f1,...,fq∈F

1

n

n∑
i=1

σi
∑

1≤j<k≤q
φ̃((fj , fk), (yj , yk))


= EXEσ

 sup
f1,...,fq∈F

1

n

∑
xi∈X

σi
∑

1≤j<k≤q
φ̃((fj , fk), (yj , yk))


≤

∑
1≤j<k≤q

EXEσ

 sup
f1,...,fq∈F

1

n

∑
xi∈X

σiφ̃((fj , fk), (yj , yk))

 .
(13)
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Sequentially, let (y, y′) be the current label pair to be
cumulated, then, according to Talagrand’s contraction lemma
[46], we have

EXEσ

 sup
fy,fy′∈F

1

n

∑
xi∈X

σiφ̃ ((fy, fy′), (y, y
′))


≤ KρEXEσ

 sup
fy,fy′∈F

1

n

∑
xi∈X

σi(fy(xi)− fy′(xi))


≤ KρEXEσ

 sup
fy∈F

1

n

∑
xi∈X

σify(xi)


+KρEXEσ

 sup
fy′∈F

1

n

∑
xi∈X

σify′(xi)


= 2KρRn(F),

where fy represent the classifier corresponding class label
y. Then, by combining with Eq.(13), it is easy to prove that
Rn(L̃r ◦ F) ≤ 2q(q − 1)KρRn(F).

Without loss of generality, assume that ∀j ∈ [q], µ =

maxj
1−min(ρj−1−ρ

j
+1,ρ

j
+1−ρ

j
−1)

(1−ρj−1−ρ
j
+1)2

.

Lemma 6. For any δ > 0, with probability at least 1− δ,

max
f∈F

∣∣∣R̂L̃(f)−RL̃(f)
∣∣∣

≤ 2q(q − 1)KρRn(F) + q(q − 1)µΘ

√
ln 2

δ

2n
.

We omit the proof, since it can be proved similarly to
Lemma 4.

Finally, similar to theorem 1, based on lemma 5 and 6, it
is easy to obtain theorem 3.

7.6 Proof for Theorem 4
For notational simplicity, we introduce the following nota-
tion:

∆j,k =
∑

y:yj=−1,yk=+1

py.

With respect to L̃, the conditional surrogate loss can be
defined as

W̃ (p,f) = Eỹ[L̃(f(x), ỹ)] =
∑
y∈Y

pyEỹ|y[L̃(f(x), ỹ)] (14)

=
∑
y∈Y

pyL(f(x),y) = W (p,f)

=
∑

1≤j<k≤q
∆j,kφ(fk − fj) + ∆k,jφ(fj − fk),

where the second equality is based on the law of total
probability.

Following Theorem 10 in [48], if φ is a differential and non-
increasing function with φ′(0) < 0 and φ(t)+φ(−t) = 2φ(0),
it suffices to prove that fj > fk if ∆j,k < ∆k,j for
every f such that W ∗(p) = W (p,f) = W̃ (p,f), where
W ∗(p) = inff W (p,f) is the conditional Bayes L-risk.
Therefore, by minimizing W̃ (p,f), we obtain the Bayes
decision function f∗, which proves L̃r is consistent to

ranking loss. Accordingly, based on Corollary 25 in [51],
we have

RLr (f̂)−R∗Lr ≤ ξ(RLr (f̂)−R∗Lr ),
where ξ is a non-negative concave function with ξ(0) =
0.

8 EXPERIMENT

The experiments for CCMN data are first reported, followed
by the experiments for PML data.

8.1 Experimental Settings
Datasets We evaluate our method on the following datasets:
music emotion, music style, mirflickr 2, tmc2007 3, Multi-
MNIST 4 [52], Multi-Kuzushiji-MNIST (Multi-KMNIST for
short), Multi-Fashion-MNIST 5 (Multi-FMNIST for short),
and VOC2007 6 [53]. It is noteworthy that the first three
datasets, i.e., music emotion, music style and mirflickr are
real-world PML datasets [30]. For these datasets, candidate
labels are first collected from web users and then are further
examined by human labelers to specify the ground-truth
labels. Note for mirflickr, we ignore the second class label
that was assigned to over 75% instances, since it leads to
severe class-imbalance issue, which is not the focus of this
paper. For tmc2007, we use its shorter version which contains
28,596 instances and 500 features for each instance. For three
Multi-MNIST-style datasets, each dataset contains 10,000
images. VOC2007 (VOC for short) contains 9,963 images for
20 object categories, which are divided into train, val and
test sets. Following [54], [55], we use the trainval set to train
the models, and evaluate the performance on the test set.
For each dataset except for VOC, we randomly sample 60%
examples for training and 40% examples for testing.
Metrics We evaluate the performance of the proposed
method based on multiple standard multi-label criterion:
hamming loss, ranking loss, coverage and average precision.
For hamming loss, ranking loss, coverage, the smaller value,
the better performance; for average precision, the larger
value, the better performance. The detail of these criterion
can be found in [40].
Implementation For experiments on all datasets except for
VOC, we train a linear model by using Adam [56] optimizer
with learning rate chosen from {0.01, 0.001}. We added an
`2-regularization term, with the regularization parameter of
0.0001. For experiments on VOC, we use an Alexnet [57] pre-
trained with the ILSVRC2012 dataset on Pytorch platform
[58]. The Alexnet is trained by using stochastic gradient
descent (SGD) with learning rate chosen from {0.01, 0.001}.
An `2-regularization term is added with the regularization
parameter of 0.0001. The batch size for all datasets is set as
200 except for tmc and mirflickr, where the batch size is set
as 400. All the experiments are conducted on GeForce RTX
2080 GPUs

2. See http://palm.seu.edu.cn/zhangml/ for music emotion, mu-
sic style, and mirflickr.

3. See http://mulan.sourceforge.net/datasets-mlc.html for tmc2007.
4. See https://github.com/shaohua0116/MultiDigitMNIST for Multi-

MNIST.
5. Similar to Multi-MNIST, we construct Multi-Kuzushiji-MNIST

and Multi-Fashion-MNIST for two commonly used datasets Kuzushiji-
MNIST and Fashion-MNIST, repsectively.

6. See http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ for VOC.
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TABLE 1
Comparison results between Ub-HL, Ub-RL and their baselines using linear models. The best performance is highlighted in bold and •/◦ indicates

whether the method with the best performance is significantly superior/inferior to other methods via paired t-test (at 0.05 significance level).

Data music emotion music style mirflickr tmc2007 Multi-MNIST Multi-KMNIST Multi-FMNIST VOC
Hamming loss (the smaller, the better)
Ub-HL/Hinge .207± .003• .125± .003• .103± .007 .059± .002 .258± .008 .256± .007• .199± .005 .063± .002
Ub-HL/Square .201± .002 .122± .002 .104± .009 .060± .001• .258± .006 .256± .007• .205± .005• .092± .006•
Ub-RL/Sigmoid .199± .004 .123± .001 .111± .017 .062± .001• .256± .007 .249± .006 .198± .007 .077± .000•
Ub-RL/Hinge .203± .001 .123± .002• .107± .010• .061± .002• .257± .007 .251± .006• .203± .005 .068± .001•
Ub-RL/Square .203± .002 .124± .003• .115± .013• .063± .002• .259± .005 .259± .002• .218± .005• .092± .015•
B-HL/Hinge .277± .028• .189± .043• .151± .021• .124± .020• .278± .011• .282± .009• .235± .009• .172± .017•
B-HL/Square .261± .022• .171± .030• .130± .015• .112± .017• .274± .008• .280± .010• .232± .010• .235± .021•
B-RL/Sigmoid .280± .008• .188± .045• .167± .025• .130± .021• .275± .010• .281± .012• .229± .006• .098± .007•
B-RL/Hinge .263± .023• .166± .026• .133± .015• .112± .017• .275± .009• .280± .011• .231± .009• .183± .019•
B-RL/Square .255± .018• .164± .028• .131± .014• .112± .015• .276± .008• .280± .010• .236± .007• .215± .019•
Ranking loss (the smaller, the better)
Ub-HL/Hinge .245± .003• .168± .006• .100± .012 .062± .004 .340± .010• .330± .014• .234± .008 .130± .016•
Ub-HL/Square .237± .002 .160± .005 .100± .013 .067± .003• .343± .009• .333± .017• .245± .009• .180± .015•
Ub-RL/Sigmoid .239± .003 .153± .004 .104± .019 .068± .003• .333± .012 .313± .014 .223± .012 .114± .013
Ub-RL/Hinge .238± .003 .160± .004 .105± .016 .064± .004• .338± .011• .323± .016• .241± .012• .133± .015•
Ub-RL/Square .240± .005 .163± .006 .111± .020 .070± .003• .348± .014• .336± .012• .270± .011• .227± .018•
B-HL/Hinge .350± .036• .309± .114 .153± .031• .193± .040• .388± .018• .389± .028• .294± .021• .248± .038•
B-HL/Square .332± .034• .284± .080• .139± .044 .185± .035• .380± .014• .386± .029• .290± .021• .270± .035•
B-RL/Sigmoid .392± .024• .298± .053• .181± .031• .240± .037• .390± .014• .384± .038• .279± .020• .241± .034•
B-RL/Hinge .342± .035• .288± .086• .139± .039 .185± .033• .380± .014• .384± .033• .286± .019• .250± .034•
B-RL/Square .330± .030• .259± .053• .143± .040 .186± .031• .381± .013• .385± .029• .296± .017• .285± .029•
Coverage (the smaller, the better)
Ub-HL/Hinge .415± .007• .230± .008• .107± .010 .154± .005 .491± .009• .480± .014• .393± .012 .189± .019•
Ub-HL/Square .403± .004 .222± .006 .107± .011 .164± .004• .493± .010• .481± .017• .401± .009• .250± .015•
Ub-RL/Sigmoid .403± .004 .211± .004 .109± .016 .161± .005• .483± .010 .466± .016 .375± .011 .171± .016
Ub-RL/Hinge .407± .006 .221± .006 .111± .014 .156± .005 .488± .012• .477± .019• .400± .018 .191± .017•
Ub-RL/Square .410± .009 .224± .008 .116± .017• .168± .004• .499± .013• .488± .018• .429± .014• .293± .018•
B-HL/Hinge .502± .029• .354± .098• .151± .026• .324± .040• .539± .016• .532± .029• .449± .023• .317± .037•
B-HL/Square .497± .031• .336± .069• .141± .037 .323± .036• .531± .013• .530± .030• .446± .022• .339± .032•
B-RL/Sigmoid .578± .016• .349± .040• .174± .027• .391± .033• .546± .010• .527± .039• .436± .027• .310± .032•
B-RL/Hinge .506± .032• .343± .072• .140± .033 .325± .033• .530± .013• .527± .033• .440± .024• .319± .031•
B-RL/Square .497± .028• .317± .046• .144± .034 .327± .033• .530± .013• .527± .028• .452± .021• .353± .028•
Average precision (the greater, the better)
Ub-HL/Hinge .632± .004• .700± .007• .834± .014 .790± .009 .510± .016 .517± .014• .644± .012 .650± .034•
Ub-HL/Square .640± .002 .709± .008 .832± .017 .786± .007• .511± .011 .514± .016• .629± .014• .573± .030•
Ub-RL/Sigmoid .636± .008 .703± .002 .820± .029 .779± .008• .516± .015 .533± .014 .650± .017 .668± .028
Ub-RL/Hinge .638± .002 .706± .007 .825± .020• .782± .008• .515± .014 .526± .016• .636± .013• .628± .038•
Ub-RL/Square .634± .003• .702± .009• .813± .026• .771± .009• .506± .013• .508± .007• .597± .016• .458± .055•
B-HL/Hinge .469± .047• .498± .140• .750± .036• .505± .091• .463± .022• .458± .024• .566± .021• .444± .070•
B-HL/Square .510± .048• .554± .102• .784± .035 .560± .080• .474± .018• .463± .024• .572± .023• .423± .061•
B-RL/Sigmoid .482± .043• .506± .114• .716± .045• .472± .092• .468± .019• .461± .030• .583± .016• .484± .074•
B-RL/Hinge .502± .051• .564± .102• .780± .032• .559± .076• .472± .018• .463± .027• .577± .020• .457± .064•
B-RL/Square .520± .042• .584± .083• .781± .031• .556± .072• .469± .015• .464± .024• .564± .018• .393± .045•

8.2 Study on CCMM data
To validate the effectiveness of the proposed unbiased
estimators, we perform experiments on multi-label data
with class-conditional multiple noisy labels. To inject label
noise into training examples, each class label is flipped
according to noise rates ρj−1 and ρj+1 randomly sampled
from {0.1, 0.2, 0.3, 0.4, 0.5}. We repeat experiments 5 times
with different noise rates and report their average results.

We compare the performance of the proposed method
with their baselines. Specifically, two variants of the proposed
method, i.e., Unbiased-HL (L̃h defined in Eq.(4), Ub-HL for
short) and Unbiased-RL (L̃r defined in Eq.(6), Ub-RL for
short) are compared with their baselines, i.e., Biased-HL (Lh
defined in Eq.(3), B-HL for short) and Biased-RL (Lr defined
in Eq.(5), B-RL for short). For L̃h and Lh, the surrogate loss
function φ is defined as the hinge loss (Hinge for short) and
least square loss (Square for short), respectively. For L̃r and
Lr, besides the hinge loss and least square loss, we also
adopt sigmoid loss (Sigmoid for short), since it is a consistent
surrogate loss, which satisfies the conditions in Theorem 4.

Table 1 reports comparison results of the proposed
methods against baseline methods by using linear models.
For each dataset, the paired t-test based on 5 repeats (at

0.05 significance level) is conducted to show weather the
proposed unbiased estimator is significantly different from
the comparing methods. From the results, it is obvious
that the proposed methods outperform their corresponding
baselines with significant superiority in almost all cases,
which validates the effectiveness of the proposed method.
The performance of Ub-RL is generally superior to Ub-
HL, which discloses that the label correlation benefits for
learning with class-conditional multi-label noise. From the
results, regarding Ub-RL, it can be observed that the sigmoid
surrogate loss generally achieves better performance than
the other losses, which provides an empirical validation of
Theorem 4, since sigmoid loss satisfies the conditions in
Theorem 4 and is thus consistent for Ub-RL with respect to
ranking loss while the others are not [48].

8.3 Study on PML data
To validate the practical usefulness of the proposed unbi-
ased estimators, we perform experiments on PML tasks.
Regarding the multi-label datasets, for training instances,
each irrelevant label yj can be flipped into a candidate label
according to noise rate ρj randomly sampled from the range
of {0.2, 0.3, 0.4, 0.5, 0.6}, which is set to be consistent with
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TABLE 2
Comparison results between the proposed method (using linear model) and PML methods. The best performance is highlighted in bold and •/◦

indicates whether the method with the best performance is significantly superior/inferior to other methods via paired t-test (at 0.05 significance level).

Data music emotion music style mirflickr tmc2007 Multi-MNIST Multi-KMNIST Multi-FMNIST VOC
Hamming loss (the smaller, the better)
uPML-HL .200± .002 .114± .002 .156± .008 .053± .000 .234± .000 .231± .001 .171± .000• .052± .000
uPML-RL .199± .002 .115± .001 .157± .003 .054± .000• .234± .000 .230± .000 .166± .000 .066± .011
PMLNI .228± .001• .115± .002 .171± .002• .081± .003• .258± .004• .263± .004• .198± .005• .096± .001•
PMLLRS .231± .000• .121± .001• .175± .008 .078± .003• .260± .004• .261± .005• .197± .007• .094± .001•
PARVLS .256± .001• .126± .001• .174± .002• .095± .001• .320± .005• .325± .007• .289± .004• .128± .000•
PARMAP .251± .004• .125± .004• .167± .003 .097± .002• .283± .004• .288± .004• .251± .003• .120± .002•
fPML .232± .001• .122± .002• .176± .009• .080± .003• .258± .003• .261± .007• .198± .006• .104± .003•
Ranking loss (the smaller, the better)
uPML-HL .236± .005• .144± .005 .124± .007 .051± .000 .303± .000• .287± .001• .180± .000• .089± .004•
uPML-RL .226± .003 .142± .002 .118± .002 .055± .001• .298± .000 .272± .000 .172± .000 .083± .003
PMLNI .250± .003• .145± .005 .124± .002• .109± .010• .334± .007• .339± .013• .223± .009• .160± .006•
PMLLRS .260± .001• .151± .000• .127± .005• .106± .010• .340± .007• .340± .016• .221± .011• .155± .004•
PARVLS .356± .003• .243± .008• .170± .004• .186± .004• .462± .004• .467± .010• .401± .008• .291± .002•
PARMAP .317± .006• .197± .006• .139± .003• .197± .013• .405± .010• .410± .017• .339± .010• .283± .003•
fPML .264± .003• .157± .004• .127± .007• .118± .011• .339± .009• .338± .014• .223± .012• .200± .011•
Coverage (the smaller, the better)
uPML-HL .411± .002• .205± .005 .125± .006 .138± .001 .456± .000• .435± .000• .327± .000• .140± .004•
uPML-RL .392± .003 .199± .003 .120± .002 .142± .001• .450± .000 .419± .000 .319± .000 .133± .003
PMLNI .413± .002• .204± .006 .124± .002• .231± .014• .483± .006• .486± .016• .373± .010• .230± .008•
PMLLRS .419± .002• .209± .001• .128± .004 .229± .015• .488± .007• .485± .019• .371± .012• .224± .006•
PARVLS .492± .002• .276± .008• .160± .003• .332± .007• .551± .002• .546± .004• .490± .008• .355± .003•
PARMAP .479± .003• .257± .006• .140± .003• .356± .015• .551± .006• .558± .020• .498± .013• .362± .001•
fPML .423± .002• .215± .004• .127± .006• .245± .012• .491± .007• .487± .017• .376± .016• .272± .013•
Average precision (the greater, the better)
uPML-HL .646± .005 .730± .005 .753± .014 .818± .001 .561± .000• .570± .001• .707± .000• .746± .004
uPML-RL .649± .005 .728± .005 .755± .004 .810± .002• .562± .000 .575± .000 .717± .000 .744± .007
PMLNI .601± .003• .728± .006 .752± .004 .723± .017• .516± .010• .505± .010• .651± .011• .621± .011•
PMLLRS .586± .003• .708± .002• .746± .013 .732± .018• .513± .009• .507± .012• .654± .012• .632± .007•
PARVLS .524± .004• .658± .004• .731± .004• .631± .005• .458± .008• .451± .008• .530± .006• .470± .002•
PARMAP .533± .007• .671± .008• .752± .004 .612± .015• .454± .004• .445± .012• .533± .006• .456± .010•
fPML .583± .005• .703± .008• .744± .014 .721± .018• .516± .007• .508± .014• .653± .010• .561± .014•

TABLE 3
Friedman statistics FF in terms of each evaluation metric and the critical
value at 0.05 significance level ( # comparing algorithms k = 7, # data

sets N = 8).

Evaluation metric FF critical value
Hamming Loss 29.6784

2.3240
Ranking loss 55.7200
Coverage 53.8932
Average Precision 34.5364

the range of real-world PML datasets. The noise rates are
unknown in experiments and to be estimated by using the
estimator proposed in Section 6. We repeat experiments 5
times with different noise rate and report the average results.

We compare with five state-of-the-art PML algorithms:
PML-NI [37], PARTICLE (including two implementations:
PAR-VLS and PAR-MAP) [30], PML-LRS [33] and fPML [59].
To make a fair comparison, we use a linear classifier as the
base model for uPML in all datasets except for VOC, where
we use a Alexnet and only fine-tune parameters of the last
layer while freeze the other parameters. For other comparing
methods, parameters are determined by the performance on
validation set if no default value given in their literature.

Table 2 reports the comparison results of two variants of
the proposed uPML method, i.e., uPML-HL (L̃h defined in
Eq.(8)) with hinge loss and uPML-RL (L̃r defined in Eq.(9))
with Sigmoid loss, against comparing PML methods. For
each dataset, the paired t-test based on five repeats (at
0.05 significance level) is conducted to show weather the
proposed unbiased estimator is significantly different from
the comparing methods. The proposed uPML method signif-

icantly outperforms the comparing PML methods in almost
all cases. In particular, on three real-world PML datasets, i.e.,
music emotion, music style and mirflickr, uPML achieves
the best performances on all cases, which demonstrates the
practical usefulness of the proposed method. In general, the
performances of uPML-RL are superior to that of uPML-HL.
This is because uPML-RL based on ranking loss considers
the label correlations, which are regarded as an essential
information for performing multi-label classifications.

Furthermore, the commonly used Friedman test [60] is
employed as the statistical test to analyze the relative
performance among the comparing approaches. Table 3
reports the Friedman statistics FF and the corresponding
critical value with respect to each evaluation metric (#
comparing algorithms k = 7, # data sets N = 8). For each
evaluation metric, the null hypothesis of indistinguishable
performance among the comparing algorithm is rejected at
0.05 significance level.

Finally, the post-hoc Bonferroni-Dunn test [60] is utilized
to illustrate the relative performance among comparing
approaches. Here, uPML is regarded as the control method
whose average rank difference against the comparing algo-
rithm is calibrated with the critical difference (CD). Accord-
ingly, uPML is deemed to have significantly different per-
formance to one comparing algorithm if their average ranks
differ by at least one CD (CD = 2.8494 in our experiment: #
comparing algorithms k = 7, # data sets N = 8). Figure 1
shows CD diagrams ( [60]) on each evaluation metric, where
the average rank of each comparing algorithm is marked
along the axis (lower ranks to the right). In each subfigure,
any comparing algorithm whose average rank is within
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a) Hamming loss b) Ranking loss

c) Coverage d) Average precision

Fig. 1. Comparison of uPML (control algorithm) against five comparing algorithms with the Bonferroni-Dunn test. Algorithms not connected with uPML
in the CD diagram are considered to have a significantly different performance from the control algorithm (CD = 2.8494 at 0.05 significance level).

one CD to that of uPML is interconnected to each other
with a thick line. From the figure, it can be observed that
uPML achieves the best (lowest) average rank in terms of all
evaluation metrics. These results convincingly demonstrate
the significance of superiority for our uPML approach.

9 CONCLUSION

In this paper, we study the problem of multi-label classifi-
cation with class-conditional multiple noisy labels, where
multiple class labels assigned to each instance may be
corrupted simultaneously with class-conditional probabil-
ities. From the perspective of the unbiased estimator, we
derive efficient methods for solving CCMN problems with
theoretical guarantee. Generally, we prove that learning from
class-conditional multiple noisy labels with the proposed
unbiased estimators is consistent with respect to hamming
loss and ranking loss. Furthermore, we propose a novel
method called uPML for solving PML problems, which can
be regarded as a special case of CCMN framework. Empirical
studies on multiple data sets validate the effectiveness of
the proposed method. In the future, we will study CCMN
with more loss functions and evaluate performances of the
proposed estimators with various base models.
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