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Abstract
The goal of semi-supervised multi-label learning (SSMLL) is to
improve model performance by leveraging the information of unla-
beled data. Recent studies usually adopt the pseudo-labeling strat-
egy to tackle unlabeled data based on the assumption that labeled
and unlabeled data share the same distribution. However, in re-
alistic scenarios, unlabeled examples are often collected through
cost-effective methods, inevitably introducing out-of-distribution
(OOD) data, leading to a significant decline in model performance.
In this paper, we propose a safe semi-supervised multi-label learn-
ing framework based on the theory of evidential deep learning
(EDL), with the goal of achieving robust and effective unlabeled
data exploitation. On one hand, we propose the asymmetric beta
loss to not only compensate for the lack of robustness in common
MLL losses, but also to solve the inherent positive-negative imbal-
ance problem faced by the EDL losses in MLL. On the other hand,
to construct a robust SSMLL framework, we adopt a dual-head
structure to generate class probabilities and instance uncertainties.
The former are used to generate pseudo-labels, while the latter are
utilized to filter OOD examples. To avoid the need for threshold
estimation, we develop a dual-measurement weighted loss function
to safely perform unlabeled training. Extensive experiments on mul-
tiple benchmark datasets verify the effectiveness of the proposed
method in both OOD detection and SSMLL tasks. Implementation
is available at: https://github.com/hz681/AsymmetricBetaLoss.
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1 Introduction
Multi-label learning (MLL) stands as a pivotal machine learning
paradigm designed to tackle situations where each instance can
be associated with multiple class labels, as opposed to traditional
single-label learning where each instance is assigned with a single
label. The objective of MLL is to develop a classifier capable of
predicting all relevant labels for unseen examples.

Due to the exponentially larger output space compared to single-
label learning, training an effective MLL classifier necessitates a
substantial number of precisely labeled examples. Unfortunately, in
realistic tasks, acquiring a large scale of precise annotations proves
to be challenging and costly. In order to handle such a problem, the
semi-supervised multi-label learning (SSMLL) framework has been
proposed to leverage the information of enormous unlabeled ones,
and in consequence, several advanced methods have emerged to
enhance the performance of SSMLL [14, 33, 38].

Typical SSMLL methods assume that labeled and unlabeled data
share the same distribution. However, in many real-world scenar-
ios, this assumption hardly holds since unlabeled examples are
often obtained through cost-effective methods, e.g., web crawling,
inevitably introducing out-of-distribution (OOD) data. An intuitive
strategy to handle OOD-corrupted unlabeled examples is combin-
ing a multi-label OOD detection method, which filters out OOD
examples, and a SSMLL method, which exploits rest in-distribution
(ID) ones. Unfortunately, due to the limited number of labeled exam-
ples, it struggles to obtain an effective OOD detector, resulting in a
large number of ID examples being misclassified as OOD. This leads
to a subsequent decline in the performance of SSMLL, which can
be validated by Figure 1, which shows the performance comparison
between our proposed method and CAP+JE (composed of a recent
SSMLL method CAP and a multi-label OOD detection method Joint
Energy) when unlabeled data is involved with OOD examples. It
can be observed that our proposed method outperforms CAP+JE

https://github.com/hz681/AsymmetricBetaLoss
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Figure 1: Performance of different semi-supervised multi-
label learning method when unlabeled data is involved with
OOD samples. The results demonstrate that simple combi-
nation methods, e.g., CAP+JE, can hardly work and result in
unfavorable performance.

with a significant margin under different labeled rates. Even only
CAP can achieve better performance than CAP+JE. These results
demonstrate that simple combination methods can hardly work and
result in unfavorable performance. As the proportion of labeled data
decreases, the gap between the two becomes larger. This means that
the SOTA SSMLL method does not work in a safe SSMLL scenario
due to the introduction of OOD examples.

To address this problem, we propose the evidence-based safe
SSMLL framework to perform OOD detection and unlabeled data
exploitation simultaneously. Considering that the commonly used
BCE loss lacks robustness to OOD, we develop the asymmetric beta
loss that not only produces class probabilities but also provides
an uncertainty measurement. This allows us to utilize the former
to generate pseudo-labels, while using the latter to measure the
likelihood of an unlabeled example being an OOD. On one hand, to
prevent the model from potential corruption by OOD examples, we
adopt a dual-head model architecture. This comprises a clean head
exclusively trained on labeled data for OOD detection and a noisy
head trained on additional unlabeled data for multi-label classifica-
tion. On the other hand, to avoid threshold estimation, we utilize
the soft pseudo-label and uncertainty to weight the contributions
of unlabeled examples. Extensive experimental results verify that,
in comparison to various methods, our method achieves superior
performance in both OOD detection and SSMLL tasks.

2 PRELIMINARIES
2.1 Problem Setting
We first formulate the problem of SSMLL with OOD data as fol-
lows. Let 𝒙 ∈ X represent a feature vector, and 𝒚 ∈ Y denote its
corresponding label vector. Here, X = R𝑑 is the feature space, and
Y = {0, 1}𝐾 is the label space with 𝐾 class labels. The training
data can be divided into three subsets, D𝑙𝑏 = {(𝒙𝑖 ,𝒚𝑖 ) | 𝑖 ∈ [𝑁𝑙𝑏 ]}
for labeled data, D𝑖𝑑 = {𝒙𝑖 | 𝑖 ∈ [𝑁𝑖𝑑 ]} for ID unlabeled data, and
D𝑜𝑑 = {𝒙𝑖 | 𝑖 ∈ [𝑁𝑜𝑑 ]} for OOD unlabeled data, where 𝑁𝑙𝑏 , 𝑁𝑖𝑑 ,

and 𝑁𝑜𝑑 represent their respective example counts. The unlabeled
set can be represented as a combination D𝑢𝑏 = D𝑖𝑑 ∪ D𝑜𝑑 . An
instance is considered as an OOD if it does not contain any label in
the label spaceY [43]. Notably, we do not know which examples in
the unlabeled data are ID and which ones are OOD during training.
Our goal is to train a model based on both D𝑙𝑏 and D𝑢𝑏 , which
aims to leverage the usefulness of ID unlabeled examples, while
alleviate the harmfulness of OOD unlabeled ones.

2.2 Evidential Deep Learning
Evidential Deep Learning (EDL) [27], which considers evidence
as a measure of support for classifying an instance to a specific
class, has emerged as a widely-used method for quantifying the
uncertainty in model predictions. This idea can also be extended to
determine whether an input instance is in- or out-of-distribution. In
our safe semi-supervised multi-label learning scenario, it is essen-
tial to have a metric to distinguish OOD examples. It is significantly
different from traditional MLL studies, which only require pre-
dicted probabilities. This motivates us to incorporate evidential
deep learning theory, which provides an uncertainty measurement
for distinguishing OOD examples.

EDL is derived from the theory of Subjective Logic (SL) [16]. In
SL, there exists a belief mass 𝑏 𝑗 associated with each exclusive class
𝑗 = 1, ..., 𝐾 , along with a global uncertainty mass 𝑢. These masses
are all non-negative and adhere to the constraint 𝑢 +∑𝐾

𝑗=1 𝑏 𝑗 = 1.
The masses can be derived from the evidence with respect to every
class 𝑗 .

𝑏 𝑗 =
𝑒 𝑗

𝑆
, 𝑢 =

𝐾

𝑆
, (1)

where 𝑆 =
∑𝐾
𝑗=1 (𝑒 𝑗 + 1) and 𝑒 𝑗 ≥ 0 is the evidence with respect

to the 𝑗-th class. According to the results in [27], a belief mass
assignment corresponds to a Dirichlet distribution 𝐷𝑖𝑟 (𝑝 |𝜶 ) with
parameters 𝛼 𝑗 = 𝑒 𝑗 + 1, i.e., the probability density function of the
prediction. Accordingly, the expected probability with respect to
the 𝑗-th class can be computed as E[𝑝 𝑗 ] =

𝛼 𝑗
𝑆
.

Consequently, we regard 𝜶 as the output of the neural network,
which is employed to model the Dirichlet distribution. This ap-
proach enables the simultaneous estimation of probability and un-
certainty for an instance. In the context of single-label scenarios, we
often take cross-entropy loss as the base loss function and compute
its Bayes risk as

L𝐸𝐶𝐸 (𝛼𝑖 𝑗 , 𝑦𝑖 𝑗 ) =
∫ 1

0
𝑦𝑖 𝑗 𝑙𝑜𝑔𝑝𝑖 𝑗𝐷𝑖𝑟 (𝑝𝑖 𝑗 |𝜶𝑖 )𝑑𝑝𝑖 𝑗

= 𝑦𝑖 𝑗
(
𝜓 (𝑆𝑖 ) −𝜓 (𝛼𝑖 𝑗 )

)
,

(2)

where𝜓 (·) represents digamma function.

3 The Proposed Method
3.1 Overview
Figure 2 provides an illustration of our proposed framework. The
clean head is trained using the labeled loss L𝑙𝑏 over the labeled
examples, while the noisy head is trained using both L𝑙𝑏 and the
unlabeled loss L𝑢𝑏 over the unlabeled examples. Before talking
about these losses, we first introduce the asymmetric beta loss (ABL)
designed to handle OOD-corrupted multi-label data. Subsequently,
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Figure 2: Overview of the proposed method. The clean head is updated solely based on labeled data, and is responsible for
predicting the uncertainty of unlabeled data, which is omitted in the figure for simplicity. In contrast, the noisy head is exposed
to both OOD samples (red box) and ID samples (green box) and is trained using the dual-measurement weighted loss function.
Pseudo labels are generated through the combination of the outputs from both heads.

we will provide the detailed explanation of the entire learning
framework. The pseudocode is illustrated in Algorithm 1.

3.2 Asymmetric Beta Loss
In MLL, the learning task can be regarded as a combination of
𝐾 independent binary classification problems. From the evidence-
based perspective, we consider each binary classification task as a
binary evidential learning problem using a Beta distribution, i.e., a
Dirichlet distribution with two parameters. Specifically, each class 𝑗
consists of two exclusive singletons (belongs to the class or not) and
has masses 𝑏+

𝑗
, 𝑏−
𝑗
,𝑢 𝑗 , where 𝑏+𝑗 , 𝑏

−
𝑗
are the belief masses of positive

and negative labels respectively and 𝑢 𝑗 is the uncertainty mass for
the 𝑗-th class. The three masses sum up to one, i.e., 𝑏+

𝑗
+𝑏−

𝑗
+𝑢 𝑗 = 1,

where satisfy 𝑏+
𝑗
≥ 0, 𝑏−

𝑗
≥ 0 and 𝑢 𝑗 ≥ 0.

Given the prediction function 𝑓 (·), for an instance 𝒙 , we obtain
evidences (𝑒+

𝑗
, 𝑒−
𝑗
) = 𝑓𝑗 (𝒙) for positive and negative classes respec-

tively, where 𝑓𝑗 (𝒙) denotes the 𝑗-th component of 𝑓 (𝒙). Based on
the evidences, the masses can be derived by

𝑏+𝑗 =
𝑒+
𝑗

𝑆 𝑗
, 𝑏−𝑗 =

𝑒−
𝑗

𝑆 𝑗
, 𝑢 𝑗 =

2
𝑆 𝑗
, (3)

where 𝑆 𝑗 = 𝑒+𝑗 + 𝑒
−
𝑗
+ 2 is referred to as the Beta strength. We use a

Beta distribution Beta(𝑝 𝑗 |𝛼 𝑗 , 𝛽 𝑗 ) to model the predicted probability
𝑝 𝑗 ∈ [0, 1] for the 𝑗-th class, where 𝛼 𝑗 = 𝑒+𝑗 + 1 and 𝛽 𝑗 = 𝑒−𝑗 + 1 are
two parameters to characterize the Beta distribution. The expected
probability for the 𝑗-th class is the mean of the corresponding Beta
distribution and computed as

𝑝 𝑗 = E[𝑝 𝑗 ] =
𝛼 𝑗

𝛼 𝑗 + 𝛽 𝑗
(4)

In MLL, the most common loss function is the binary cross
entropy (BCE) loss. Similar to the ECE loss in Eq.(2), the evidential
BCE can be defined in the same way for every class 𝑗 . Note that in
the following definition, we omit the index 𝑗 when the context is

clear.

LEBCE (𝛼, 𝛽,𝑦) =
{
𝜓 (𝛼 + 𝛽) −𝜓 (𝛼), if 𝑦 = 1,
𝜓 (𝛼 + 𝛽) −𝜓 (𝛽), if 𝑦 = 0.

(5)

where𝜓 is the digamma function. Although EBCE loss enjoys ad-
vantageous theoretical properties of evidential learning, it suffers
from the issue of inherent positive-negative imbalance in MLL, i.e.,
negative labels dominate the majority while positive ones consti-
tute a smaller portion for every class, resulting in a degradation of
model performance. To deal with this problem, ASL [23] loss is an
improved version of BCE loss, which down-weights easy negative
examples and enforces models to focus on positive ones. Formally,
ASL loss can be defined as

LASL (𝑝,𝑦) =
{
− (1 − 𝑝)𝛾

+
𝑙𝑜𝑔(𝑝), if 𝑦 = 1,

− (𝑝 −𝑚)𝛾
−
𝑙𝑜𝑔(1 − 𝑝), if 𝑦 = 0.

(6)

where𝑚 = min(𝑝, 𝑐) and 𝑐 is a constant probability shift parameter
used for neglecting very easy negative examples. 𝛾+ and 𝛾− stand
for focusing parameter. In practice, we often set 𝛾− > 𝛾+ to focus
on positive examples.

Similar to EBCE loss, by taking ASL as the base loss function, we
obtain the asymmetric beta loss (ABL) by calculating its Bayesian
risk. When 𝑦 = 1, it is easy to derive the analytical solution for the
ABL loss through the integral operation. When 𝑦 = 0, the probabil-
ity shifting technique adopted by ASL loss cannot be directly used
to ABL loss due to the fact that our model outputs the probability
distribution rather than the certain probability. We define a shifted
random variable 𝑝𝑐 following the distribution 𝐵𝑒𝑡𝑎(𝑝𝑐 |𝛼𝑐 , 𝛽), where
𝛼𝑐 = max(𝛼− 𝑐

1−𝑐 𝛽, 0). This modification guarantees thatE(𝑝𝑐 ) = 0
when E(𝑝) ≤ 𝑐 to discard negative samples when their probability
is very low.
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Algorithm 1 The Main Procedures of the Proposed Method

Input: Labeled dataset D𝑙𝑏 = {(𝒙𝑖 ,𝒚𝒊)}𝑁𝑙𝑖=1; unlabeled dtaset D𝑢𝑏 = {𝒙𝑖 }𝑁𝑢𝑖=1; feature extractor 𝑔(·); clean head ℎ𝑐 (·); noisy head ℎ𝑛 (·).
1: for 𝑖 = 1 toWarmupEpoch do
2: 𝒛𝑙𝑏 = 𝑔(𝒙𝑙𝑏 ), (𝜶𝑐𝑙𝑏 , 𝜷

𝑐
𝑙𝑏
) = ℎ𝑐 (𝒛𝑙𝑏 ), (𝜶𝑛𝑙𝑏 , 𝜷

𝑛
𝑙𝑏
) = ℎ𝑛 (𝒛𝑙𝑏 ). ⊲ calculate the output Beta Distribution

3: Update 𝑔(·) and ℎ𝑐 (·) with L𝐴𝐵𝐿 (𝜶𝑐𝑙𝑏 , 𝜷
𝑐
𝑙𝑏
,𝒚).

4: Update 𝑔(·) and ℎ𝑛 (·) with L𝐴𝐵𝐿 (𝜶𝑛𝑙𝑏 , 𝜷
𝑛
𝑙𝑏
,𝒚).

5: end for
6: for 𝑖 = WarmupEpoch+1 to MaxEpoch do
7: 𝒛𝑙𝑏 = 𝑔(𝒙𝑙𝑏 ), (𝜶𝑐𝑙𝑏 , 𝜷

𝑐
𝑙𝑏
) = ℎ𝑐 (𝒛𝑙𝑏 ), (𝜶𝑛𝑙𝑏 , 𝜷

𝑛
𝑙𝑏
) = ℎ𝑛 (𝒛𝑙𝑏 ).

8: 𝒛𝑢𝑏 = 𝑔(𝒙𝑢𝑏 ), (𝜶𝑐𝑢𝑏 , 𝜷
𝑐
𝑢𝑏

) = ℎ𝑐 (𝒛𝑢𝑏 ), (𝜶𝑛𝑢𝑏 , 𝜷
𝑛
𝑢𝑏

) = ℎ𝑛 (𝒛𝑢𝑏 ).

9: Assign the pseudo labels 𝒑̂𝑐 =
𝜶𝑐
𝑢𝑏

𝜶𝑐
𝑢𝑏

+𝜷𝑐
𝑢𝑏

, 𝒑̂𝑛 =
𝜶𝑛
𝑢𝑏

𝜶𝑛
𝑢𝑏

+𝜷𝑛
𝑢𝑏

, 𝒚̃ = 𝒑̂𝑐 ⊗ 𝒑̂𝑛 . ⊲ calculate pseudo labels by element-wise multiplication

10: Obtain the enhanced pseudo labels 𝒚̂ by 𝑦+ =
(𝑦̃)𝑚

𝑦̃𝑚+(1−𝑦̃)𝑚 and 𝑦− =
(1−𝑦̃)𝑚

(𝑦̃)𝑚+(1−𝑦̃)𝑚 .
11: Calculate the uncertainties 𝒖 and its normalized version 𝒖̂, where 𝑢𝑖 = 2𝐾∑𝐾

𝑗=1 𝜶
𝑐
𝑖 𝑗

, 𝑢𝑖 = 𝑢𝑖
max𝑖′ ∈ [𝑁𝑢 ] 𝑢𝑖′

. ⊲ the shape of 𝑢 is (𝐵, 1)

12: Update 𝑔(·) and ℎ𝑐 (·) with L𝐴𝐵𝐿 (𝜶𝑐𝑙𝑏 , 𝜷
𝑐
𝑙𝑏
,𝒚).

13: Update 𝑔(·) and ℎ𝑛 (·) with L𝑢𝑏 (𝒖̂,𝜶𝑛𝑢𝑏 , 𝜷
𝑛
𝑢𝑏
, 𝒚̂) + L𝐴𝐵𝐿 (𝜶𝑢𝑙𝑏 , 𝜷

𝑢
𝑙𝑏
,𝒚).

14: end for
Output: The trained neural network with 𝑔(·), ℎ𝑐 (·) and ℎ𝑛 (·).

Finally, the Asymmetric Beta Loss is defined as follows1

LABL =


−
∫ 1

0
(1 − 𝑝)𝛾

+
𝑙𝑜𝑔(𝑝)𝐵𝑒𝑡𝑎(𝑝 |𝛼, 𝛽)𝑑𝑝, if 𝑦 = 1,

−
∫ 1

0
𝑝
𝛾−
𝑐 𝑙𝑜𝑔(1 − 𝑝𝑐 )𝐵𝑒𝑡𝑎(𝑝𝑐 |𝛼𝑐 , 𝛽)𝑑𝑝𝑐 , if 𝑦 = 0,

=


𝑤+ [𝜓 (𝛼 + 𝛽 + 𝛾+) −𝜓 (𝛼)], if 𝑦 = 1,

𝑤− [𝜓 (𝛼𝑐 + 𝛽 + 𝛾−) −𝜓 (𝛽)], if 𝑦 = 0,
(7)

where 
𝑤+ =

∏𝛾+−1
𝑟=0

𝛽+𝑟
𝛼+𝛽+𝑟 ,

𝑤− =
∏𝛾−−1
𝑟=0

𝛼𝑐+𝑟
𝛼𝑐+𝛽+𝑟 .

(8)

Here, different from ASL loss, 𝛾+ and 𝛾− should be non-negative
integers to calculate the weighting coefficients.

3.3 Evidence-Based Safe SSMLL Framework
Based on favorable theoretical properties of ABL loss, we can obtain
two reliable measurements, the probability for generating pseudo-
labels, and the uncertainty for detecting OOD examples. Below, we
will introduce these two key components of our framework.

In SSMLL, the key of generating pseudo-labels lies in estimat-
ing a threshold to separate positive and negative labels for each
instance or class. The recent method [38] has developed the class-
distribution-aware thresholding strategy to separate positive and
negative labels for each class according to the class proportions of
labeled examples. Although this method can generate pseudo-labels
with the proportions that approximates the true ones, it suffers from
the issue of introducing many false positive labels. This is attributed
to the alteration in the class proportions of unlabeled data caused
by the presence of OOD data. Even if a OOD detection method is

1The detailed derivation can be found in Appendix.

used, since detecting all OOD examples is challenging, it still results
in the introduction of false positive labels. To solve this problem, we
propose to generate soft pseudo-labels, which avoid the estimation
of thresholds.

Specifically, to enhance the quality of pseudo-labels, we employ
two classification head, i.e., clean head trained only on labeled data
and noisy head trained on additional unlabeled data. For notational
simplicity, we decompose the classifier 𝑓 into the backbone𝑔(·), the
clean head ℎ𝑐 (·) and the noisy head ℎ𝑛 (·). Similarly, we can obtain
two groups of parameters (𝜶𝑐 , 𝜷𝑐 ) = ℎ𝑐 ◦ 𝑔(𝒙) and (𝜶𝑛, 𝜷𝑛) =

ℎ𝑛 ◦𝑔(𝒙). Then we generate pseudo-labels for an unlabeled instance
𝒙𝑖 as

𝒚̃𝑖 = 𝒑̂𝑐𝑖 ⊗ 𝒑̂𝑛𝑖 , (9)

where 𝒑̂𝑐
𝑖
and 𝒑̂𝑛

𝑖
are expected probabilities over 𝐾 classes, and ⊗

means element-wise multiplication. From the equation, it is evident
that only when both classification heads provide high predicted
probabilities can we obtain a relatively confident positive pseudo-
label. This reduces the risk of introducing false positives into model
training, which contributes to enhancing pseudo-labeling perfor-
mance.

While generating soft pseudo-labels helps avoid threshold esti-
mation, the mod el may suffer from the under-fitting issue due to
unconfident pseudo-labels. We enhance the confidence of pseudo-
labels by introducing a trick, which involves taking the power of
pseudo-labels and normalizing the result. Specifically, for every
pseudo-label label 𝑦 (the index 𝑗 is omitted), by taking power op-
eration and normalization, we obtain its enhanced versions 𝑦+ =

(𝑦̃)𝑚
𝑦̃𝑚+(1−𝑦̃)𝑚 and 𝑦− =

(1−𝑦̃)𝑚
(𝑦̃)𝑚+(1−𝑦̃)𝑚 . To show why this trick can

effectively enhance the confidence of pseudo-labels, Figure 3 illus-
trates the value of 𝑦 with the increase of value of 𝑦 as𝑚 changes.
From the figure, we can observe that as the pseudo-label values
approach one or zero, the enhanced pseudo-labels become increas-
ingly confident.



Asymmetric Beta Loss for Evidence-Based Safe Semi-Supervised Multi-Label Learning KDD ’24, August 25–29, 2024, Barcelona, Spain.

0.00 0.25 0.50 0.75 1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

y

m = 1
m = 2
m = 3
m = 4

Figure 3: The relationship between 𝑦 and 𝑦 with different
𝑚. As the pseudo-label value 𝑦 approach one or zero, the
enhanced pseudo-label 𝑦 become increasingly confident.

Given the pseudo-labels 𝒚̂𝑖 and evidences (𝜶𝑛
𝑖
, 𝜷𝑛
𝑖
) predicted by

the noisy head, we define the unlabeled loss for the 𝑖-th unlabeled
instance as

L(𝜶𝑛, 𝜷𝑛, 𝒚̂) =
𝐾∑︁
𝑗=1

𝑦 𝑗L+
ABL (𝛼

𝑛
𝑗 , 𝛽

𝑛
𝑗 ) + (1−𝑦 𝑗 )L

−
ABL (𝛼

𝑛
𝑗 , 𝛽

𝑛
𝑗 ) . (10)

To alleviate the harmfulness of OOD examples, we down-weight
their losses based on the uncertainty measurement, with the goal of
implicitly highlight the contributions of ID examples. Specifically,
for each unlabeled instance 𝒙𝑖 , given that its model outputs follow-
ing a Beta distribution, we compute its uncertainty as 𝑢𝑖 = 2𝐾∑𝐾

𝑗=1 𝛼 𝑗
.

A higher uncertainty, a large probability of an unlabeled instance
to be an OOD. We use the certainty 1 − 𝑢𝑖 as the weight to alle-
viate the harmfulness of OOD examples. Formally, we define the
dual-measurement weighted unlabeled loss as

L𝑢𝑏 =

𝑁𝑢𝑏∑︁
𝑖=1

(1 − 𝑢𝑖 )L(𝜶𝑛𝑖 , 𝜷
𝑛
𝑖 , 𝒚̂𝑖 ), (11)

where 𝑢𝑖 = 𝑢𝑖
max𝑖′ ∈ [𝑁𝑢𝑏 ] 𝑢𝑖′

is the normalized version of uncertainty
𝑢𝑖 .

Given the label vector 𝒚𝑖 and evidences (𝜶𝑐
𝑖
, 𝜷𝑐
𝑖
), (𝜶𝑛

𝑖
, 𝜷𝑛
𝑖
) pre-

dicted by clean and noisy head respectively, we define the labeled
loss as

L𝑙𝑏 =

𝑁𝑙𝑏∑︁
𝑖=1

LABL (𝜶𝑐𝑖 , 𝜷
𝑐
𝑖 ,𝒚𝑖 ) + LABL (𝜶𝑛𝑖 , 𝜷

𝑛
𝑖 ,𝒚𝑖 ) . (12)

Finally, we define the overall loss function as

L = 𝜆L𝑙𝑏 + (1 − 𝜆)L𝑢𝑏 . (13)

4 Experiments
In this section, we conduct experiments to validate the effectiveness
of the proposed method. Subsequently, we perform ablation studies
to assess the contribution of each component within our method.

4.1 Experimental Settings
Datasets. To evaluate the proposed method, we perform experi-

ments on multiple multi-label benchmark datasets, including Pascal
VOC-2012 (VOC for short) 2 [7], MS-COCO-2014 (COCO for short)
3 [20], and NUS-WIDE (NUS for short) 4 [3]. There are 5,717 and
82,081 images in VOC and COCO respectively, while NUS consists
of 150,000 examples. We adopt two methods to generate labeled
examples: 1) sampling a fixed proportion 𝑝 of examples from the
ID data as labeled data; 2) taking a fixed number of examples as
labeled data.

To construct OOD-corrupted datasets, following the previous
work [13], we manually select a subset of ImageNet[5, 22] as OOD
data. Specifically, for VOC and COCO, we use 20 OOD classes
from ImageNet-21K identical to [13]. These classes have no overlap
with ImageNet-1K, VOC, nor COCO. For NUS, we select another
20 classes from ImageNet-21K based on the same principle as the
previous work. Notably, these 20 classes exclude high-level concepts
such as animals, plants, and flowers in NUS. The OOD dataset for
VOC and COCO comprises 17,635 samples while the dataset for
NUS contains 30,212 samples. The remaining ID examples and OOD
examples consist of the unlabeled dataset.

In contrast to conventional semi-supervised learning, where
datasets are typically divided into two segments, i.e., labeled data
and unlabeled data, our OOD-corrupted datasets are partitioned
into labeled data, unlabeled ID data, and unlabeled OOD data. The
proportion of these three partitions will affect the experimental out-
comes. Therefore, we conduct experiments with two different set-
tings. Firstly, we make use of the full datasets and adjust the labeled
rate. The labeled rate here means the number of labeled instance di-
viding the number of unlabeled ID instances. The evaluated labeled
rate in COCO and NUS is 𝑝 ∈ {0.01, 0.02, 0.03, 0.05, 0.1, 0.15, 0.2} ,
while 𝑝 ∈ {0.05, 0.1, 0.15, 0.2} in VOC. Secondly, considering the
former experiments can not reflect the influence of the scale of
OOD datasets, we perform another experimental setting by altering
the ratio of unlabeled ID samples to unlabeled OOD samples (ID
rate). In implementation, we alter ID rate by increasing or decreas-
ing the number of unlabeled samples and keep the OOD datasets
unchanged. The ID rates tested are 𝑞 ∈ {0.5, 1, 2, 4}. Each ID rate
is combined with 4 fixed numbers of labeled samples (1000, 2000,
3000, 4000 for COCO and 2000, 4000, 6000, 8000 for NUS). More
details about our dataset settings can be found in the Appendix.

Comparing Methods. To validate the effectiveness of the pro-
posed method, we compare our method with two advanced semi-
supervised methods, a SSMLL method and an intuitive method for
OOD-corrupted SSMLL setting. FreeMatch [34] and ADSH [8] are
two state-of-the-art SSL methods. CAP [38] is a state-of-the-art
SSMLL method. As there is no end-to-end framework available
for our targeted problem setting to the best of our knowledge,
we construct a method by combining the basic SSMLL algorithm
with OOD detection methods. Joint Energy [32] is an advanced
OOD detection method for multi-label classification by aggregating

2http://host.robots.ox.ac.uk/pascal/VOC/
3https://cocodataset.org
4https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-
WIDE.html

http://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
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Table 1: Comparison results on COCO and NUS in terms of mAP (%) with different labeled rate 𝑝.

Dataset COCO NUS

Method FreeMatch ADSH CAP+JE CAP Ours FreeMatch ADSH CAP+JE CAP Ours

𝑝 = 0.01 47.46 48.93 48.65 51.72 55.15 32.62 31.87 34.89 36.23 37.56
𝑝 = 0.02 54.44 55.29 55.06 57.55 60.38 37.47 37.44 38.74 40.83 41.72
𝑝 = 0.03 57.38 58.06 57.63 60.12 62.76 40.02 40.53 41.60 43.24 43.72

𝑝 = 0.05 60.56 61.49 60.75 62.91 65.19 42.49 43.40 43.81 45.77 46.14
𝑝 = 0.10 63.97 64.90 65.67 66.96 68.28 45.07 45.85 46.47 48.10 48.25
𝑝 = 0.15 65.71 66.70 67.87 68.90 69.72 46.30 47.42 47.91 49.53 49.20
𝑝 = 0.20 67.00 67.73 69.11 70.02 70.79 47.14 48.37 48.72 50.46 50.15
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Figure 4: Illustration of model’s precision throughout semi-supervised training process on COCO. Only our method exhibits a
consistent improvement, while other methods either continues to decrease or fluctuates during semi-supervised learning stage.

Table 2: Comparison results on VOC in terms of mAP (%)
with different labeled rate 𝑝.

Method FreeMatch ADSH CAP+JE CAP Ours

𝑝 = 0.05 75.22 75.01 74.72 73.23 77.08
𝑝 = 0.10 81.03 81.03 80.52 79.92 81.30
𝑝 = 0.15 83.01 82.42 82.72 82.11 82.98
𝑝 = 0.20 83.82 83.15 83.48 83.06 84.06

label-wise energy scores from multiple labels. We use the Gauss-
ian Mixture Model to decide whether the unlabeled data is OOD
according to the joint energy score, and then apply CAP algorithm
on the predicted ID data.

Implementation. For each method, we employ ResNet-50 [11]
pre-trained on ImageNet as the backbone. We adopt RandAugment
[4] and Cutout [6] for data augmentation. We employ the AdamW
optimizer [21] and the one-cycle policy scheduler [28] to train the
model and the maximum learning rate is 0.0001. The warm-up
epoch is set to 12, and the maximum training epoch is 40. The batch
size is set to 64 for all datasets. In our method, hyper-parameters
are set as 𝛾+ = 0, 𝛾− = 4, 𝑐𝑙𝑏 = 0.2, 𝑐𝑢𝑏 = 0.05, 𝑚 = 2, 𝜆 = 0.5.
For CAP, we employ Asymmetric Loss [23] as loss function. We
also perform an Exponential Moving Average (EMA) for the model

parameter with a decay of 0.9997. The random seed is set to 1 for
all experiments.

Evaluation. We evaluate our model in two aspects, multi-label
classification ability among ID class space and OOD recognition
ability among unlabeled dataset. For the multi-label classification
problem, we take mAP (mean average precision) of the ID label
space as the metric. For OOD recognition, we adopt AUROC (area
under receiver operating characteristic curve) and report the best
result during the training process.

4.2 Empirical Results
Table 1 and Table 2 show the experiment results of the metric mAP
on three datasets COCO, NUS and VOC. From the table we can
find that our method has achieved best performance in most cases
and has an obvious advantage especially when the labeled rate is
low. Comparing CAP with its modified version (CAP+JE), the mod-
ification that excludes OOD instances decreases its performance
unexpectedly, although Joint Energy is a remarkable OOD detection
method. It reveals the fact that sometimes no detector is better than
bad detectors. Moreover, our method outperforms CAP in almost
every test case. The reason lies in CAP assigning pseudo labels
based on the assumption that labeled and unlabeled sets share the
same distribution; however, this assumption is violated by OOD
data. NUS is the largest dataset and its OOD proportion is relatively
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Table 3: Comparison results on COCO and NUS in terms of mAP (%) with different ID rate 𝑞.

ID
Rate

Labeled
Counts

COCO Labeled
Counts

NUS

FreeMatch ADSH CAP+JE CAP Ours FreeMatch ADSH CAP+JE CAP Ours

𝑞 = 0.5

1000 50.62 49.93 50.70 50.59 54.31 2000 35.76 34.67 35.32 36.22 36.40
2000 56.58 56.59 56.74 56.42 58.83 4000 38.45 40.60 39.23 41.07 41.53
3000 59.27 59.40 59.67 59.64 60.88 6000 41.17 42.42 42.35 42.84 44.00
4000 60.78 61.17 61.10 59.87 62.72 8000 43.13 44.09 44.03 44.49 45.21

𝑞 = 1

1000 50.62 49.85 50.53 51.82 55.45 2000 35.61 34.54 36.41 36.96 37.73
2000 56.90 57.04 56.80 57.37 60.07 4000 39.67 40.54 41.22 41.88 41.95
3000 59.37 59.74 59.44 60.26 61.95 6000 41.14 42.42 42.31 43.32 44.13
4000 60.84 61.21 60.96 61.84 63.31 8000 43.07 44.17 43.81 44.94 45.28

𝑞 = 2

1000 50.08 50.51 50.20 52.47 56.45 2000 35.03 35.25 36.14 37.88 38.04
2000 56.64 56.95 56.26 58.30 60.80 4000 39.78 40.50 40.77 42.40 42.60
3000 59.34 59.65 59.22 60.72 62.70 6000 41.02 42.43 42.11 43.87 44.53
4000 60.80 61.31 60.86 62.21 63.92 8000 42.97 44.14 43.91 45.53 45.77

𝑞 = 4

1000 49.49 50.51 49.63 53.35 57.03 2000 34.90 34.65 36.16 38.26 39.39
2000 56.20 56.71 56.10 58.90 61.39 4000 39.56 40.16 40.70 42.55 43.27
3000 58.86 59.52 58.87 61.44 63.35 6000 40.84 42.21 42.18 44.21 45.10
4000 60.65 61.26 60.58 62.68 64.81 8000 42.83 43.94 43.50 45.99 46.16

small, which may cause our method to have the worst comparison
results on it.

We visualize the trend of the model’s precision change during
the semi-supervised learning phase on COCO in Figure 4. Only our
method exhibits a consistent improvement, while other methods
either continue to decrease or fluctuate during the semi-supervised
learning phase.

The experimental results in Table 3 show comparison results
with different ID rate. As the ID rate increases, i.e., as more ID
samples are included in the unlabeled dataset, our method main-
tains a substantial advantage over other approaches. As the amount
of unlabeled data increases, our method demonstrates improved
performance, whereas some methods (FreeMatch and CAP+JE) re-
main unchanged or even exhibit a decline in their performance.
This observation indicates that our method effectively leverages the
unlabeled ID samples to a greater extent. From Table ?? we obtain
that our method shows more superiority than other methods when
OOD data constitutes the main part of the unlabeled dataset. Be-
sides, when the OOD rate is low, our method still outperforms other
methods. In fact, further experiments illustrate that our method can
even be applied to semi-supervised learning without OOD data.

In Table 4, we report the OOD detection performance with the
metric AUROC. We can see that our model discriminates OOD
samples better than Joint Energy. Comparing the OOD detection
results with the semi-supervised learning results, we find that the
OOD detection ability is independent of the classification ability
and the scale of labeled data. This suggests that our method is a
suitable choice for OOD detection when labeled data is scarce.

4.3 Ablation Study and Discussion
To further explore the effectiveness of the proposed method, we
perform extensive ablation studies to validate the effectiveness of
each component in our method.

Soft Pseudo Label. Our method adopts soft pseudo labels rather
than hard pseudo labels. To verify its effectiveness, we compare
it with the hard pseudo-labeling method. In experiments, we take
E(𝑝) = 0.5 as the threshold to distinguish OOD data from ID data.
From Table 6 we find this modification leads to a decrease in accu-
racy. This phenomenon occurs because thresholds amplify errors
when OOD or negative instances are predicted with high confidence
labels. There are two main advantages to using soft pseudo-labels:
1) We do not need to determine thresholds. In practice, this is a chal-
lenging task, as optimal thresholds vary across classes and datasets.
2) We can use all examples for training. Existing SSL work often
uses a threshold to filter out a subset of unreliable pseudo-labels,
resulting in underutilization of unlabeled examples. By using soft
pseudo-labels, we can not only fully utilize all unlabeled examples,
but also adaptively adjust the contribution of different examples to
the learning process.

Dual-head Classifier. In our method, the dual-head classifier has
two effects. On the one hand, it separates clean data from noisy data,
making the clean headmore accurate on the OOD detection task. On
the other hand, it helps to generate pseudo labels by multiplication,
reducing the probability of misclassifying negative instances as
positive ones, which is dangerous in our setting. For comparison,
we try to remove one classifier and the experimental results is in
Table 6. The result indicates that the dual-head structure is the
most important component of our framework compared to other
ablation experiments.

Uncertainty Weighting. Instead of definitively separating OOD
data from unlabeled data, the proposed method uses a flexible way
to exclude the influence of OOD data. In the compared method, we
take the instances with the highest 𝑘% uncertainty score as OOD
data and the rest instances as ID data, where 𝑘% is the true OOD
rate in the unlabeled dataset. Figure 5 shows the comparison result
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Table 4: Comparison results of OOD detection performance in terms of AUROC (%).

Dataset Method 𝑝 = 0.01 𝑝 = 0.02 𝑝 = 0.03 𝑝 = 0.05 𝑝 = 0.1 𝑝 = 0.15 𝑝 = 0.2

VOC CAP+JE 51.61 59.57 80.39 79.66 80.15 81.26 83.31
Ours 79.84 81.73 89.09 90.24 89.96 91.57 90.77

COCO CAP+JE 81.70 80.54 80.95 83.62 82.52 83.48 85.29
Ours 89.48 87.66 88.21 88.79 90.01 89.41 90.88

NUS CAP+JE 77.66 83.15 84.18 86.30 87.14 87.88 87.71
Ours 86.05 86.29 86.03 88.06 86.14 84.94 86.19

Table 5: Comparison results of SSMLL performance on COCO and NUS in terms of mAP(%).

Dataset Method 𝑝 = 0.01 𝑝 = 0.02 𝑝 = 0.03 𝑝 = 0.05 𝑝 = 0.1 𝑝 = 0.15 𝑝 = 0.2

COCO CAP 52.61 58.19 60.75 63.52 67.48 69.30 70.41
Ours 55.64 60.83 63.10 65.68 68.59 70.08 71.05

NUS CAP 32.24 37.88 40.76 44.30 48.63 50.14 50.85
Ours 36.36 41.52 44.15 45.83 48.19 49.25 50.38
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Figure 5: Comparison results of the proposed method on
COCO with certainty-based weighting and true threshold.
Despite the unfairness in the comparison due to the imprac-
ticality of accessing true thresholds in practice, our method
still achieves similar or even superior performance.

of the proposed method under uncertainty-based weighting and
true thresholds. Although it is an unfair comparison, our method
still achieves similar or even better performance. This demonstrates
the effectiveness of our uncertainty weighting method.

Asymmetric Beta Loss. We compare Asymmetric Beta Loss with
the basic EBCE loss function in Eq. (5). Results are shown in Table
6 and it proves that Asymmetric Beta Loss is an advanced choice
for multi-label evidential learning since it leverages the

Application in SSMLL. Although the proposed method is de-
signed for OOD-corrupted SSMLL scenarios, it can also be a gen-
eral framework for other settings such as SSMLL. We compare the

Table 6: Ablation results of different components in the pro-
posed method on COCO.

Method 𝑝 = 0.05 𝑝 = 0.1 𝑝 = 0.15 𝑝 = 0.2

w/o soft pseudo label 64.54 67.67 69.25 70.44
w/o dual-head classifier 61.59 65.52 67.38 68.91

w/o Asymmetric Beta Loss 64.00 67.25 68.76 69.78
Ours 65.19 68.28 69.72 70.79

SSMLL performance of our model with the state-of-the-art SSMLL
method CAP. Results in Table 5 show that our method also achieves
good performance in the SSMLL task and is significantly better than
CAP when labeled samples are scarce. Exploring the application
of our method in other settings and its underlying mechanism is
crucial in our future research.

5 Related Work
5.1 Semi-Supervised Learning
Recent years havewitnessed the great development of semi-supervised
learning [1]. Pseudo-labeling [18] and consistency regularization
[17, 26, 31] are the most popular methods to utilize unlabeled data.
Pseudo-labeling assigns model’s predictions as pseudo labels to un-
labeled data and this augmented dataset is used for further training
to improve model performance. Consistency regularization sug-
gests that a neural network should be invariant when confronted
with different perturbations of the same instance. FixMatch [29]
is a famous work that combines the two techniques in a concise
framework. Many subsequent works [8, 34, 40, 42, 44] are based
on its paradigm with locality improvement. Despite the significant
successes of pseudo-labeling, it is inherently tied to the closed-
set assumption and cannot be directly applied to the open world.
This phenomenon occurs because noisy pseudo-labeled outliers
can diminish the performance of self-supervised training.
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5.2 Open-Set Semi-Supervised Learning
Open-set semi-supervised learning (OSSL) [9] is a special semi-
supervised multi-class classification problem where the unlabeled
set contains other classes different from the labeled set. Sometimes
it should recognize the unknown class during the inference stage,
which is the task of open-set recognition. Early studies on OSSL
follow the basic strategy of utilizing only sufficiently confident ID
samples within traditional SSL schemes [2, 12, 41]. For example,
MTC [41] employs a binary classifier to predict the likelihood of a
given instance belonging to the outlier category and updates the
network parameters and the outlier score alternately. OpenMatch
[24] uses an one-vs-all (OVA) [25] classifier as its outlier detector
and introduces the application of soft consistency regularization
to the outlier detector. However, this detect-and-exclude strategy
will encounter challenges when labeled data is limited or the de-
tector is not accurate enough. Many experiments have found that
an unreliable outlier detector is more harmful than the outliers
themselves. Aware of this phenomenon, some works start to make
use of OOD data rather than considering them as merely negative
noise. IOMatch [19] employs a multi-binary classifier and a stan-
dard closed-set classifier to generate unified open-set classification
targets, which regard all outliers as a single new class. Taking these
targets as open-set pseudo-labels, it can utilize both inliers and
outliers. HOOD [15] divides OOD data into benign ones and malign
ones and identify them through content and style from each im-
age. Benign OOD data helps to train the closed-set classifier while
malign OOD data helps to deceive anomalies.

5.3 Semi-Supervised Multi-label Learning
Semi-supervised multi-label learning (SSMLL) is studying about the
semi-supervised method for multi-label classification problem [10].
Although there are many different settings in MLL area, e.g., partial
multi-label learning [35–37], multi-label learning with missing label
[30, 39], there are few works studying on the original SSMLL set-
ting in recent years. DRML [33] takes feature-label and label-label
relations into account simultaneously with dual-classifier domain
adaptation strategy. PercentMatch [14] proposes a dynamic thresh-
old adjusting method and unlabeled loss weights as an extension
of FixMatch to SSMLL. CAP [38] employs a class-aware approach
to determine the threshold in different classes. Since these are all
traditional SSL methods and rely heavily on the same distribution
assumption, these SSMLL works are unable to deal with the SSMLL
setting that involves unlabeled OOD samples.

6 Conclusion
In this paper, we focus on the difficulties of the SSMLL problem
when OOD samples are involved in unlabeled data and propose a
unified framework to solve this problem. Our framework utilizes
the theory of evidential deep learning to detect OOD data and an
adaptive weight to implicitly weaken them. A dual-head structure
enables the model to perform both OOD detection and multi-label
classification simultaneously. Considering the property of multi-
label data, we improve the conventional loss by introducing the
asymmetric beta loss. Experiments have demonstrated the effec-
tiveness of each component of our contribution and underscore the
strong potential for its application to other problems.
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A Further Ablation Studies
Ablation of Hyper-parameters. 𝛾+,𝛾− , 𝑐𝑙𝑏 , 𝑐𝑢𝑏 are hyper-parameters

inherited from Asymmetric Loss. We set them as default values
given in the original paper. Table 7 and Table 8 report the ablation
studies on the parameters𝑚 and 𝜆. These experiments were con-
ducted on COCO with a labeled ratio of 𝑝 = 0.05. From Table 7,
we observe a significant improvement when𝑚 changes from 1 to
2. However, there is no significant change in the results when𝑚
exceeds 2. From Table 8, we find that the method achieves its best
performance with 𝜆 = 0.5, indicating an equal treatment of labeled
and unlabeled loss.

Table 7: Ablation results of different𝑚.

m 1 2 3 4

mAP 64.29 65.19 65.16 65.25

Table 8: Ablation results of different 𝜆.

𝑙𝑎𝑚𝑏𝑑𝑎 0.1 0.3 0.5 0.7

mAP 62.79 64.32 65.19 63.42

Other baselines. The comparison methods shown in the main
body are the standard methods in the close domain of our studying
problems. There are also other potential comparison methods, and
we report their performance based on our experimental setup on
COCO in Table 9. DRML and PercentMatch are SSMLL methods,
as is CAP. We observe that CAP outperforms DRML and Percent-
Match with large margin so that we select CAP as the default
SSMLL method. We also compare the combination of CAP with dif-
ferent OOD detectors. We observe that CAP with maximum energy
outperforms CAP with Joint Energy when the labeled rate is low.
However, the situation is reversed when the labeled rate is high.
We choose CAP with Joint Energy in the main content because
Joint Energy is the OOD detecting metric tailored for multi-label
scenarios.

B Dataset details
The experiments presented in Table ?? and Table ?? investigate
the impact of different ratios of ID and OOD examples on model
performance. Considering that the number of OOD examples is
fixed (see Section 4.1), we adjust the ratio between OOD and ID
by changing the number of unlabeled ID examples. To make it
clearer, we report the numbers of labeled ID, unlabeled ID, and
OOD examples under different ID ratios in Table 10 and Table 11.
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Table 9: Comparing results on COCO in terms of mAP(%).

Method p=0.05 p=0.1 p=0.15 p=0.2

DRML 41.98 54.18 57.63 59.13
PercentMatch 57.86 62.91 65.54 67.38

CAP 62.91 66.96 68.90 70.02

CAP+maximum softmax 60.92 64.80 66.53 68.12
CAP+maximum energy 61.39 65.58 67.27 68.76

CAP+Joint Energy 60.75 65.67 67.87 69.11

Table 10: The numbers of labeled ID, unlabeled ID and OOD
examples under different ID ratios on COCO.

ID rate Labeled Counts labeled ID : unlabeled ID : OOD

𝑞 = 0.5 1000 1000:8817:17635
𝑞 = 0.5 2000 2000:8817:17635
𝑞 = 0.5 3000 3000:8817:17635
𝑞 = 0.5 4000 4000:8817:17635

𝑞 = 1 1000 1000:17635:17635
𝑞 = 1 2000 2000:17635:17635
𝑞 = 1 3000 3000:17635:17635
𝑞 = 1 4000 4000:17635:17635

𝑞 = 2 1000 1000:35270:17635
𝑞 = 2 2000 2000:35270:17635
𝑞 = 2 3000 3000:35270:17635
𝑞 = 2 4000 4000:35270:17635

𝑞 = 4 1000 1000:70540:17635
𝑞 = 4 2000 2000:70540:17635
𝑞 = 4 3000 3000:70540:17635
𝑞 = 4 4000 4000:70540:17635

Table 11: The numbers of labeled ID, unlabeled ID and OOD
examples under different ID ratios on NUS.

ID rate Labeled Counts labeled ID : unlabeled ID : OOD

𝑞 = 0.5 2000 2000:15106:30212
𝑞 = 0.5 4000 4000:15106:30212
𝑞 = 0.5 6000 6000:15106:30212
𝑞 = 0.5 8000 8000:15106:30212

𝑞 = 1 2000 2000:30212:30212
𝑞 = 1 4000 4000:30212:30212
𝑞 = 1 6000 6000:30212:30212
𝑞 = 1 8000 8000:30212:30212

𝑞 = 2 2000 2000:60424:30212
𝑞 = 2 4000 4000:60424:30212
𝑞 = 2 6000 6000:60424:30212
𝑞 = 2 8000 8000:60424:30212

𝑞 = 4 2000 2000:120848:30212
𝑞 = 4 4000 4000:120848:30212
𝑞 = 4 6000 6000:120848:30212
𝑞 = 4 8000 8000:120848:30212

C Derivation of Eq. (7)
Since 𝑝 is a random variable follows 𝐵𝑒𝑡𝑎(𝑝 |𝛼, 𝛽), its probability
dense function is

𝐵𝑒𝑡𝑎(𝑝 |𝛼, 𝛽) = 𝑝𝛼−1 (1 − 𝑝)𝛽−1

𝐵(𝛼, 𝛽) ,

where

𝐵(𝛼, 𝛽) =
∫ 1

0
𝑝𝛼−1 (1 − 𝑝)𝛽−1𝑑𝑝 =

Γ(𝛼)Γ(𝛽)
Γ(𝛼 + 𝛽)

and Γ represents gamma function and it has property

Γ(𝑧 + 1) = 𝑧Γ(𝑧) .

Hence,

𝐵(𝛼, 𝛽 + 𝛾) =
𝛾−1∏
𝑟=0

( 𝛽 + 𝑟
𝛼 + 𝛽 + 𝑟 ) 𝐵(𝛼, 𝛽) .

Besides,

𝜓 (𝑧) = Γ′ (𝑧)
Γ(𝑧) =

𝑑 𝑙𝑛Γ(𝑧)
𝑑𝑧

.

As a result, when 𝑦 = 1,

LABL = −E
[
(1 − 𝑝)𝛾 𝑙𝑛𝑝

]
= −

∫ 1

0
(1 − 𝑝)𝛾 𝑙𝑛𝑝 𝑝

𝛼−1 (1 − 𝑝)𝛽−1

𝐵(𝛼, 𝛽) 𝑑𝑝

= − 1
𝐵(𝛼, 𝛽)

∫ 1

0

𝜕[𝑝𝛼−1 (1 − 𝑝)𝛽+𝛾−1]
𝜕𝛼

𝑑𝑝

= − 1
𝐵(𝛼, 𝛽)

𝜕
∫ 1
0 𝑝𝛼−1 (1 − 𝑝)𝛽+𝛾−1𝑑𝑝

𝜕𝛼

= − 1
𝐵(𝛼, 𝛽)

𝜕𝐵(𝛼, 𝛽 + 𝛾)
𝜕𝛼

= −
𝛾−1∏
𝑟=0

( 𝛽 + 𝑟
𝛼 + 𝛽 + 𝑟 )

1
𝐵(𝛼, 𝛽 + 𝑘)

𝜕𝐵(𝛼, 𝛽 + 𝛾)
𝜕𝛼

= −
𝛾−1∏
𝑟=0

( 𝛽 + 𝑟
𝛼 + 𝛽 + 𝑟 )

𝜕 𝑙𝑛𝐵(𝛼, 𝛽 + 𝛾)
𝜕𝛼

= −
𝛾−1∏
𝑟=0

( 𝛽 + 𝑟
𝛼 + 𝛽 + 𝑟 )

( 𝜕 𝑙𝑛Γ(𝛼)
𝜕𝛼

− 𝜕 𝑙𝑛Γ(𝛼 + 𝛽 + 𝛾)
𝜕𝛼

)
=

𝛾−1∏
𝑟=0

( 𝛽 + 𝑟
𝛼 + 𝛽 + 𝑟 )

(
𝜓 (𝛼 + 𝛽 + 𝛾) −𝜓 (𝛼)

)
.

It is noted that here we use 𝛾 to represent 𝛾+ for simplicity.
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Similarly, when 𝑦 = 0,

LABL = −E
[
𝑝𝛾 𝑙𝑛(1 − 𝑝)

]
= −

∫ 1

0
𝑝𝛾 𝑙𝑛(1 − 𝑝) 𝑝

𝛼−1 (1 − 𝑝)𝛽−1

𝐵(𝛼, 𝛽) 𝑑𝑝

= − 1
𝐵(𝛼, 𝛽)

𝜕
∫ 1
0 𝑝𝛼−1 (1 − 𝑝)𝛽+𝛾−1𝑑𝑝

𝜕𝛼

= − 1
𝐵(𝛼, 𝛽)

𝜕𝐵(𝛼 + 𝛾, 𝛽)
𝜕𝛼

= −
𝛾−1∏
𝑟=0

( 𝛼 + 𝑟
𝛼 + 𝛽 + 𝑟 )

𝜕 𝑙𝑛𝐵(𝛼 + 𝛾, 𝛽)
𝜕𝛼

=

𝛾−1∏
𝑟=0

( 𝛼 + 𝑟
𝛼 + 𝛽 + 𝑟 )

(
𝜓 (𝛼 + 𝛽 + 𝛾) −𝜓 (𝛽)

)
.

Here, 𝛼 denotes 𝛼𝑐 , and 𝜆 represents 𝜆− for simplicity.
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