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ABSTRACT

Class-conditional variants of Generative adversarial networks (GANs)

have recently achieved a great success due to its ability of selec-

tively generating samples for given classes, as well as improving

generation quality. However, its training requires a large set of

class-labeled data, which is often expensive and difficult to collect

in practice. In this paper, we propose an active sampling method to

reduce the labeling cost for effectively training the class-conditional

GANs. On one hand, the most useful examples are selected for ex-

ternal human labeling to jointly reduce the difficulty of model

learning and alleviate the missing of adversarial training; on the

other hand, fake examples are actively sampled for internal model

retraining to enhance the adversarial training between the discrim-

inator and generator. By incorporating the two strategies into a

unified framework, we provide a cost-effective approach to train

class-conditional GANs, which achieves higher generation qual-

ity with less training examples. Experiments on multiple datasets,

diverse GAN configurations and various metrics demonstrate the

effectiveness of our approaches.
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1 INTRODUCTION

In machine learning, generative modeling has been extensively

studied to generate samples indistinguishable from real data. Re-

cently, the emergence of deep generative models offers a powerful
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framework for tackling the problem. Among them, generative ad-

versarial networks (GANs) [5] as a new way of learning generative

model, have been proved to be a promising one owing to their ex-

cellent performances. Recent works have shown GANs can produce

convincing results in various challenging tasks, such as realistic

image generation [24, 38], conditional image generation [12, 13]

and text generation [37].

Along with this success, many variants of GANs have emerged

over the past few years. For example, many models are proposed

to improve the quality of generated images [3, 14], and some other

methods try to stabilize the training procedure [1, 2, 20]. Class-

conditional GANs is another branch of research which attracted

many research interests. They try to generate images of a given

class by utilizing additional information, such as the class label

[22, 25]. Among them, auxiliary classifier GAN(AC-GAN) [25] is a

representative approach that jointly trains the real-fake discrimina-

tor and an auxiliary classifier for predicting the specific class label.

It can selectively generate images for given classes, and usually

leads to both higher generation quality and stability.

Despite the great successes AC-GANs have achieved, a potential

limitation is that the model training requires a large set of labeled

examples. The performance of AC-GANs seriously depends on

the size of labeled training data. As shown in Figure 1, when a AC-

GAN is applied to conditional image generation tasks, the quality of

generated images is significantly improved as the number of labeled

training data increases. The examples in the figure are generated

by AC-GAN trained on different numbers of training data from

CIFAR10 [16] (the training size varies from 1k , 5k , 20k to 50k). In
real-world scenarios, it is expensive and difficult to acquire a large

number of labeled data. Therefore, training AC-GANs with lower

labeling cost is an important issue with great significance.

Active learning is a primary approach for reducing the labeling

cost[7, 11, 31]. It progressively selects the most useful samples and

queries their labels, with the target of training an effective model

with less queries. The selection strategy thus plays an important

role in active learning. One of the most common strategies is the

uncertainty-based selection[18, 32, 36], which measures the un-

certainty of unlabeled samples from the predictions of previous

classifiers. There are some recent studies trying to combine infor-

mativeness and representativeness, which estimate the potential

contribution of an example on improving the classifier [8, 10, 11, 35].

However, these strategies are designed for traditional classification

tasks.

In this paper, we propose an Active Learning approach for Class-

conditional GANs (ALCG), which try to produce high-quality im-

ages for given classes with low annotation cost under the AC-GAN

[25] framework. Different from existing active learning methods,

our ALCG framework proposes to automatically select samples
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Figure 1: Generated image samples on CIFAR10 with various numbers of training data.

from training data as well as fake data during the two different

stages, i.e., the external human labeling stage and internal model

retraining stage, respectively. In the external human labeling stage,

we propose a certainty sampling strategy to actively select exam-

ples from unlabeled data and query their labels for model training.

Specifically, the most certain examples with high prediction confi-

dence are selected. On one hand, these examples are usually clean

images and are relatively easier for AC-GANs training; on the other

hand, the most certain samples contribute less to the classification

loss so as to alleviate the unstable training of AC-GANs, which

is caused by the missing of adversarial training in the auxiliary

classifier [39].

During the internal model retraining stage, regular GANs typ-

ically update the model by generating a batch of samples from

random noise, which may lead to an inaccurate discriminator. We

propose an adversarial sampling strategy to actively select the

most discriminative examples for updating both discriminator and

generator. The adversarial sampling (AS) strategy leads to a more

intensive adversarial training between discriminator and generator,

and thus can make the model converge faster and often produce

better results.

Our main contributions are summarized as follows:

• A general framework of active learning for class-conditional

GANs is proposed. It actively selects examples from both

training data and fake data to produce high-quality images

with lower annotation cost.

• Two novel sampling strategies are proposed. In the external

human labeling stage, certainty sampling is proposed to

lower the difficulty of the model learning. In the internal

model retraining stage, the adversarial sampling is proposed

to enhance the adversarial training between discriminator

and generator.

• Experiments on multiple benchmark datasets, diverse GAN

configurations and various performance metrics demon-

strate that the proposed method can achieve higher gen-

eration quality with less training data.

The rest of the paper is organized as follows: In section 2, we

briefly review related works. In section 3, the proposed approach is

introduced. In section 4, experimental results are reported, followed

by the conclusion in section 5.

2 RELATEDWORK

The goal of generative modeling is to learn the true generative

distribution of training data and then to generate or reproduce the

new data point from the same distribution. Recently, the emergence

of deep generative models offers a powerful framework for this task.

Among them, two of the most popular and efficient approaches are

GANs [5] and variational autoencoders(VAEs) [15, 29], in which

VAEs are proposed to maximize the lower bound of the data log-

likelyhood and GANs aim at achieving a Nash equilibrium between

discriminator and generator. Each of these two frameworks has its

own merits. VAEs use deterministic approximation to maximize

likelyhood so as to avoid intractable density functions [5], whereas

GANs learn a generative distribution through adversarial training

without explicit density estimation [15].

Recently, researchers are interested in conditional variants of

GANbeacuse they can selectively generate samples for given classes

or improve generation quality and stability as mentioned in section

1. In addition to class labels [22, 25, 39], supervised information

including object locations [27], texts [28, 38], images [13, 17] and

videos [34] are used for conditional variants of GANs, and they

have achieved great successes in various tasks. As a representative

of class-conditional GANs, AC-GAN [25] incorporates class label

information by introducing an auxiliary classifier for classes in the

original GAN framework. It can selectively generate images for

given classes, and always leads to both higher generation quality

and stability. The proposed approaches are implemented under the

AC-GAN framework.

Active learning has been actively studied for reducing the annota-

tion cost [10, 31]. The basic approach of the active learning methods

is to progressively select and annotate most useful unlabeled sam-

ples to boost the model. The key element of active learning is the

selection criterion, and it is typically designed according to the

classification uncertainty of samples [18, 32]. Recently, researchers

have also combined active learning and deep learning to propose

more effective methods. Some works apply active learning methods

in deep image classification tasks to reduce the annotation cost of

large scale data [9, 33]. There are a few methods using deep gener-

ative models, such as GANs, to generate or acquire more effective

queries [21, 40]. While these methods are utilizing GANs to help

active learning, in this paper, we propose to employ active learning

techniques to improve the GANs.

3 THE PROPOSED APPROACH

In following content, we use superscript r and д to denote the real

distribution and generative distribution, respectively. Let x ∈ X

denote the training sample, and y ∈ Y denote the corresponding

class label. Here, X ⊆ Rd is feature space and Y = {1, 2, ...,m}

is label space, wherem is the number of classes. We denote L =
{xi }

nl
i=1 the labeled data set with nl examples, andU = {xi }

nu
i=1 the

unlabeled data set with nu examples. We will first introduce the
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Figure 2: The framework of active learning for class-conditional GANs.

basic idea of AC-GAN, and then propose our ALCG framework.

Finally, we describe the detail of certainty sampling and adversarial

sampling progressively.

3.1 AC-GAN

In our proposed approach, we employ AC-GAN [25] as the base

model. AC-GAN is one of the most popular conditional variants

of GANs [5]. In the AC-GAN, the conditional generator is com-

posed of two neural networks, in which one is the discriminator D
and the other is the auxiliary classifier C . Discriminator D assigns

probability p = D(x) for examples x ∼ pr (x) or assigns probability
1 − p for examples x ∼ pд(x). The auxiliary classifier C(y |x) gives
a probability distribution over class labels given x . The objective
function has two parts: an adversarial loss and an auxiliary classifier

loss.

The adversarial loss is defined as:

LAC = Ex r∼pr (x )
[
logD

(
xr

) ]
+ Ez∼p(z),yд∼p(y)

[
log

(
1 − D

(
G
(
z,yд

) ) ) ]
,

(1)

where D attempts to find the best decision boundary between real

and generated data by maximizing this loss, and G attempts to

generate data indistinguishable by D by minimizing this loss.

The auxiliary classifier loss is used to prompt the generator

to generate samples for given classes. To achieve this, C is first

optimized using classification loss of real data:

Lr
AC = E(x r ,yr )∼pr (x ,y)

[
− logC

(
y = yr |xr

) ]
, (2)

where C learns to assign correct class labels to the real data by

minimizing this loss. Furthermore,G is optimized by using a classi-

fication loss of generated data:

L
д
AC
= Ez∼p(z),yд∼p(y)

[
− logC

(
y = yд |G

(
z,yд

) ) ]
(3)

where G attempts to generate data for given classes by minimizing

this loss.

Overall, the full objective function is defined as:

LD/C = LGAN − Lr
AC

(4)

LG = LGAN + L
д
AC

(5)

D/C is trained by maximizing LD/C whileG is trained by minimiz-

ing LG .

Algorithm 1 The CS_MC algorithm

1: Input:

2: U : the unlabeled set

3: L: the initially labeled set

4: Process:

5: Initialize the parameters of the AC-GAN with labeled set L.
6: For: t = 1 : T
7: Use certainty sampling introduced in subsection 3.3 to

select a batch of samplesQ fromU and query their labels

8: Add Q to L, and remove Q fromU .

9: Feed labeled set L into AC-GAN for retraining.

10: For each training iteration

11: Sample a minibatch of real samples xr from L.
12: Generate a set of fake dataxд by generator from random

sampling noise.

13: Use adversarial sampling introduced in subsection 3.4

to select a minibatch of samples x̂д from fake data xд .
14: Use xr and x̂д to update D/C by maximizing Eq.(4).

15: Use x̂д to update G by minimizing Eq.(5).

16: End For

17: End For

3.2 The ALCG framework

As Figure 2 illustrates, our ALCG framework actively selects sam-

ples from two kinds of source, i.e., training data from unlabeled set

and fake data generated by generatorG during two different stages,

i.e., external human labeling stage and internal model retraining

stage. During the external human labeling stage, our ALCG frame-

work progressively feeds the samples from unlabeled set U into

the AC-GAN, and then certainty sampling is proposed to estimate

the certainty of samples based on predictions from the auxiliary

classifier C . The most certain ones are selected to add into labeled

set after annotator labeling and are fed into the model for retraining.

During the internal model retraining stage, adversarial sampling is

used to select the most discriminative samples x̂д from fake data

xд based on the outputs of discriminator D. These samples are used

to update both discriminator and generator. The entire algorithm

can be summarized in Algorithm 1. In the next subsections, we

will respectively introduce the detail of certainty sampling and

adversarial sampling.
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Figure 3: Visualization of images with low/high certainty.

3.3 Certainty Sampling

In this subsection, we focus on the external human labeling, in

which the most useful samples are selected to query their labels and

add them into labeled set L. In contrast to classical active learning

that considers the most uncertain samples, e.g., samples of low

classification confidence, we instead select the most certain samples,

i.e., samples of high classification confidence for AC-GAN training.

We expect the certain examples can reduce the difficulty of the

model learning and alleviate the unstable training of AC-GAN.

Firstly, the most certain examples tend to be clean images and are

relatively easy for AC-GANs training. Figure 3 shows the samples of

low confidence (in the first row) and the samples of high confidence

(in the second row), in which the confidences are estimated based

on the predictions of the auxiliary classifier in AC-GAN. Compared

to low confidence examples, the certain ones tend to be clearer or

contain cleaner backgrounds and more explicit semantic objectives.

Such examples allow AC-GANs to be more likely to generate high-

quality samples through adversarial training. Secondly, the most

certain examples contribute to a less auxiliary classifier loss so as to

alleviate the unstable training of AC-GANs which is caused by the

missing of adversarial training in the auxiliary classifier [39]. This

helps the model avoid suffering from mode collapse and produce

high-quality image samples.

Next, we propose three certainty sampling criteria to estimate the

certainty of an example, and select most certain ones for querying.

In traditional active learning, the uncertainty of an example is

defined by the confidence of the classifier prediction, where a lower

confidence indicates a larger uncertainty. Similarly, we can define

the certainty in the same way. Specifically we can define the cer-

tainty based on p(yri |x
r
i ) predicted by the auxiliary classifier which

denotes the probability of xi belonging to jth class. Based on clas-

sification probability, the certainty can be defined by entropy and

margin which are commonly used for designing selection criteria.

The three certainty sampling criteria are defined as following. Note

that we only focus on real examples in this subsection, therefore,

the superscript r is omitted for convenience.

• Most confidence (MC): Rank all the unlabeled samples in

a descending order according to the mci value, which is

defined as:

mci = max
j

p (yi = j |xi ) , (6)

If the probability of the most probable class is high then the

auxiliary classifier is certain about the sample.

• Large margin (LM): Rank all the unlabeled samples in a de-

scending order according to the lmi value, which is defined

as:

lmi = p (yi = j1 |xi ) − p (yi = j2 |xi ) (7)

where j1 and j2 represent the first and the second most prob-

able class labels predicted by the auxiliary classifier. The

larger of the margin means the auxiliary classifier is more

certain about the sample.

• Least entropy (LE): Rank all the unlabeled samples in an

ascending order according to the lei value, which is defined

as:

lei = −

m∑
j=1

p (yi = j |xi ) logp (yi = j |xi ) (8)

The lower entropy value means the auxiliary classifier is

more certain about the sample.

At every iteration during the external human labeling stage, we

first compute certainty for each example over the unlabeled set U
according to each of three criteria and then select a small batch of

the most certain samples to query their ground-truth labels. We

name the algorithm of Certainty Sampling with Most Confidence

criterion as CS_MC for short. Similarly, we have CS_LM for the

large margin criterion, and CS_LE for the least entropy criterion.

3.4 Adversarial Sampling

In this subsection, we focus on the internal model retraining, in

which we retrain a AC-GAN over the labeled set L. Regular GANs
often generate a batch of samples from random noise and use these

samples to update the model. We argue that such samples will lead

to an inaccurate discriminator, as illustrated in Figure 4. Figure 4

(a) shows the distribution of real examples and potential fake ex-

amples, while the blue line represents an initial decision boundary

for discriminating real and fake data. Figure 4 (b) shows that when

we use the randomly generated fake samples (in cyan) to update

the discriminator, the decision boundary will move toward the real

samples. However, the discriminator is still not curate enough to

correctly identify all fake samples (it makes mistakes for fake sam-

ples on the side closed to real samples of the decision boundary).

Instead we find that more discriminative samples often make the

decision boundary more accurate. As shown in Figure 4 (c), when

the discriminator is updated by using the most discriminative sam-

ples (in red), it is able to identify all the fake samples, and then it

will provide the generator with more accurate gradient guidance

for updating and make it produce better results. However, the most

discriminative samples are unavailable because fake data are un-

known before sampled. Thus we propose an intuitive method to

acquire samples as discriminative as possible.

Specifically, at each iteration of model retraining, the generator

first generates a set of candidate examples from random sampling

noise, and then the most discriminative ones are selected from the

set to update both discriminator and generator. We set the size

of the candidate set as γ times the size of the final selected batch.

Obviouslywe are likely to acquiremore discriminative samples with

a larger γ so as to obtain a more powerful discriminator. However,

an excessively powerful discriminator sometimes makes generator

stop updating. We thus set it as a default value, such as 4 in the
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(a) data distribution (b) randomly sampled fake examples (c) actively sampled fake examples

Figure 4: Illustration of random sampling and adversarial sampling.
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Figure 5: The comparison of certainty sampling on CIFAR10 with different GAN configurations.

experiments to avoid such cases. The selection criterion is based on

the output of the discriminatorD (xi ), which denotes the probability
of fake sample xi belonging to real data. We first rank all fake

samples in a descending order according to the value of D (x), and
then select a batch of the largest ones for updating discriminator

and generator. This method is named by Adversarial Sampling

(AS) because the most discriminative fake samples lead to a more

intensive adversarial training between discriminator and generator

so as to make the model converge faster and often produce better

results.

4 EXPERIMENTS

4.1 Settings

We perform experiments on three benchmark dataset: CIFAR10

[16], STL10 [4] and TinyImagenet [30], which are commonly used

in both image generation and active learning tasks. CIFAR10 con-

tains 60k 32×32 natural images, which are divided into 50k training

and 10k test images. STL10 contains 5k training and 8k test images.

TinyImagenet contains 200 classes with 500 images for each class

and we divide 500 images into 400 training and 100 test images.

Both CIFAR10 and STL10 have 10 classes. For TinyImagenet, we
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Figure 6: The comparison of certainty sampling on STL10 with different GAN configurations.
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Figure 7: The comparison of certainty sampling on TinyImagenet10 with different GAN configurations.
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Figure 8: Generated image samples on CIFAR10 with different sampling strategy

(a) AC-DCGAN (b) AC-SNGAN

Figure 9: The comparison of adversarial sampling on CIFAR10 with different GAN configurations.

randomly sampled a subset with 10 classes and name it TinyIma-

genet10. For STL10 and TinyImagenet10, we also resize the original

image size to 32 × 32. Among each of datasets, we randomly select

1k samples from training data to initialize the networks and the

rest are left as unlabeled dataset. To avoid the influence of random-

ness, we repeat the experiments for 3 times and report the average

results.

We examine our methods on following three popular models:

DCGAN [26], SNGAN [23] and WGAN-GP [6]. We implement

AC-GAN based on these three models, and we use D/C in which

the layers are shared except for the last layer. We also apply the

standard DCGAN architecture for each model. As shown in [19],

GANs are sensitive to parameters. Actually, it is impractical to tune

the parameters in active learning. Therefore, instead of searching

optimal parameters for each case, we use default parameters that

are typically used in the settings without active sampling for all

methods.

In the experiments, we examine the performance on three met-

rics for a comprehensive analysis: (1) Inception Score (IS), (2) Fréchet

Inception distance (FID), and (3) GAN-test. Inception score cal-

culates the expectation of KL-divergence between the conditional

class distribution and the marginal class distribution to measure

both quality and diversity of generated images. FID measures the

distance between the distribution of real images and generated

images based on Inception embeddings. We use it to evaluate the

quality of generative distribution. The GAN-test is the accuracy of

a classifier trained on real images and tested on generated images.

The metric reflects the precision (i.e., image quality) of GANs and

quantifies how close generated images are to a data manifold.

In the following, we firstly report the results to examine the

effectiveness of certainty sampling and adversarial sampling, re-

spectively, and then report the results of the ALCG method.

4.2 Performances of Certainty Sampling

In this subsection, we examine the performances of certainty sam-

pling independently, in which a regular AC-GAN model is trained

without adversarial sampling during the internal model retrain-

ing stage. Note that there is no existing approach applicable to

our setting, we compared the proposed certainty sampling criteria

most confidence, least entropy and large margin (which are de-

noted by CS_MC, CS_LE and CS_LM, respectively) with random

sampling (which is denoted by RAND). Figure 5, 6 and 7 show the

results on CIFAR10, STL10 and TinyImagenet10, respectively. The

results show that our method outperforms the baseline method

from the aspects of the quality of generated images, the overall gen-

erative distribution and conditional generative distribution which

are reflected on Inception score, FID and GAN-test, respectively.

Regarding three metrics, our certainty sampling is significantly bet-

ter than random sampling, on all GAN configurations and datasets.

While comparing among the three certainty sampling criteria, they

are comparable to each other in most cases.

We also show some example images generated on CIFAR10 in

Figure 8. For each sampling method, the model trained on all labeled

data is used to generate image samples. Each row shows samples
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Figure 10: The comparison of ALCG on different datasets with different GAN configurations

belonging to the same class. Obviously, for both AC-DCGAN and

AC-SNGAN, samples generated with certainty sampling acquire

much higher fidelity as compared to random sampling.

4.3 Performances of Adversarial Sampling

In this subsection, we examine the performances of adversarial

sampling. Due to page limit, we only report the results of Incep-

tion score and GAN-test in this and next subsections, where FID is

omitted since it is also a Inception based metric and often yields

similar result to Inception score. To validate the effectiveness of

adversarial sampling independently, Figure 9 plots performance

curves of AC-DCGAN and AC-SNGAN with or without adversar-

ial sampling(which are denoted by AS and Regular, respectively)

during the training process. It can be observed that the result of

model with AS is significantly better than result of model without

AS, on all GAN configurations and metrics, which validates that

adversarial sampling is effective for AC-GANs training.

4.4 Performances of the ALCG method

Lastly, we examine the performances of the proposedmethodALCG.

Results in Subsection 4.2 have shown that the performance of the

three certainty sampling criteria are very similar. To save the space,

we thus only implement the method with the most confidence crite-

rion. And we compare ALCGwith methods CS_MC and RAND. The

performance curves are plotted in Figure 10. It can be observed that

with different GAN configurations and different datasets, ALCG

achieves the best result in most cases. This demonstrates that our

proposed ALCG framework can improve generation quality with

less training data.
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5 CONCLUSION

In this paper, we perform active learning for cost-effective training

of class-conditional GANs. Examples are actively selected for both

external human labeling and internal model retraining. During the

external human labeling stage, certainty sampling is proposed to

reduce the difficulty of model learning and alleviate the missing

of adversarial training in AC-GANs. During the internal model

retraining stage, adversarial sampling is proposed to enhance the

adversarial training between the generator and the discriminator.

Experiments are performed on different datasets with various GAN

configurations. The results show that the proposed approaches

can achieve high-quality conditional image generation with signifi-

cantly lower cost. In the future, we plan to apply our approaches

on higher resolution image datasets. Also the diversity information

will be considered in the active sampling to further improve the

performance.
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