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Abstract—Partial multi-label learning (PML) deals with prob-
lems where each instance is associated with a candidate label set,
which contains multiple relevant labels and some noisy labels.
In many real-world scenarios, it is impractical to annotate all
examples for a huge-size dataset. Instead, a more common case is
that only a small set of the data are annotated with partial labels,
while most data are unlabeled. In this paper, we formalize such
problems as a new learning framework called Semi-Supervised
Partial Multi-label Learning (SSPML). To solve the SSPML
problem, a latent label variable is introduced for each example
as the low-dimensional embedding of the feature space. On one
hand, label variables are recovered by encouraging consistent
similarity measurement between the feature space and the label
space; on the other hand, the similarities are adaptively updated
based on the feedback from the label space. Meanwhile, the
multi-label classifier is jointly trained under the supervision of
label variables. Extensive experiments on multiple datasets from
various real-world tasks validate the effectiveness of the proposed
approach.

I. INTRODUCTION

In many real-world classification applications, an instance

could be assigned with multiple class labels simultaneously

[1]. For example, a piece of music can be categorized into

different genres [2]; a page of website may be associated

with multiple topics [3], and an image can be annotated with

several tags [4]. The task of multi-label learning is to train a

classification model that can predict all the relevant labels for

unseen instances. In previous studies on multi-label learning,

a common assumption is that each training instance has been

precisely annotated with all of its relevant labels. However,

in many real-world scenarios, one can only get access to a

candidate label set for each training instance, which contains

multiple relevant labels and some other noisy labels. For exam-

ple, in crowdsourcing environments, unreliable annotators may

assign an image with multiple candidate labels among which

only some of them are accurate ones. In order to handle such

problems, the partial multi-label learning (PML) framework

has been firstly formalized by [5], and in consequence, several

advanced PML methods has been recently proposed [6]–[18].

Typical partial multi-label learning methods assume that

the candidate label set is available for all training instances.

Unfortunately, in many real-world tasks such as video char-

acter classification [12] and gene function prediction [7], this

assumption hardly holds since it is difficult to annotate all

examples in a huge-size dataset. While it is difficult to train

effective models based only on the small set of partial-labeled

examples, it is rather important to exploit information from

unlabeled instances, which are usually easy to collect.

We formalize the learning problem as a new framework

called semi-supervised partial multi-label learning (SSPML).

More specifically, SSPML attempts to learn a classification

model from partially labeled and unlabeled training examples

simultaneously, where each instance is either associated with

a candidate label set or even without any supervised infor-

mation. Note that neither PML nor semi-supervised multi-

label learning (SSMLL) [19], [20] can be directly applied to

solve this problem. On one hand, PML methods fail to utilize

the enormous unlabeled data which may be useful for model

training; on the other hand, SSMLL always assume that each

training instance is associated with ground-truth labels, which

is not available in our situation. Therefore, SSPML is a novel

learning framework with significant differences with existing

settings.

To solve SSPML problems, in this paper, a novel method

is proposed to identify ground-truth labels from candidate sets

of partially labeled data and meanwhile exploit the manifold

structure of unlabeled data. In the proposed SSPML method,

a basic assumption is that the ground-truth labels can be

regarded as a low-dimensional embedding of the high dimen-

sional feature space. Then by encouraging consistent similarity

measurement between the feature space and the label space, a

latent label variable is learned for each training instance. Fur-

ther, the similarities among training examples are optimized

by exploiting the information from both feature space and

label space. Instead of separating the learning process into two

stages, the proposed method performs label variable recovery

and multi-label classifier training in a pipeline to facilitate

the model to be more robust and generalize well. Extensive

experiments on multiple datasets from various real-world tasks

demonstrate the effectiveness of the proposed SSPML method.

Figure I illustrates the difference between SSPML framework

proposed in this paper and its related multi-label learning

frameworks.

The rest of this paper is organized as follows: Section 2

reviews some related works; Section 3 introduces our proposed

SSPML approach; experimental results are reported in Section

4, followed by the conclusion in Section 5.

II. RELATED WORKS

The proposed semi-supervised partial multi-label learning

framework is related to two popular learning frameworks:
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Fig. 1. Comparisons among four multi-label learning frameworks.

semi-supervised multi-label learning and partial multi-label

learning.

Exploiting unlabeled data under the multi-label learning

setting has attracted many research interests. A few attempts

have made to tackle inductive semi-supervised multi-label

learning [19]–[21]. In [19], authors propose to learn a sub-

space representation by utilizing both labeled and unlabeled

data, while a classifier is trained simultaneously via large

margin criterion on labeled data. In [20], authors try to

utilize label correlation in labeled data and maximum-margin

regularization over unlabeled data to optimize a group of linear

predictors for inductive multi-label classification. A Bayesian

semi-supervised multi-label learning (BSSML) is proposed by

combining linear dimensionality reduction with linear binary

classification under low-density assumption [22]. In [23], a co-

training based semi-supervised multi-label learning method is

proposed to train two classifiers by dichotomizing the feature

space with diversity maximization, and then pairwise ranking

predictions on unlabeled data is iteratively communicated

for model refinement. As an advanced version, MLCT [24]

leverages information concerning the co-occurrence of pair-

wise labels to address the class-imbalance challenge. DRML

[25] is proposed to solve semi-supervised multi-label learning

problems by jointly exploring feature distribution and label

relation simultaneously. In [26], authors solve semi-supervised

multi-label learning problems with missing labels.

To handle the partial-labeled data, one of the most straight-

forward methods is to train a multi-label classifier by treat-

ing all the candidate labels as accurate. Unfortunately, such

methods ignore the noisy labels in candidate sets, and thus

may result in degenerated performance. In consequence, some

techniques are specially designed for solving PML problems

recently. Among them, PML-lc and PML-fp [5] are the firstly

proposed two effective methods to solve PML problems by

introducing a confidence value for each candidate label. In [7],

authors propose to achieve disambiguation by utilizing low-

rank matrix approximation and latent dependencies between

labels and features. The decomposition scheme is employed

to transform the observed noisy label matrix into a low-rank

ground-truth label matrix and a sparse noisy label matrix, in

which the ground-truth label matrix is used to train a multi-

label classifier [10]. PARTICLE [8] identifies the credible

labels with high labeling confidences by employing an it-

erative label propagation procedure.Then, the credible labels

are employed to instantiate two PML methods PAR-VLS and

PAR-MAP via pairwise label ranking. DRAMA [11] trains a

gradient boosting model to fit the label confidence learned

from manifold structure in the feature space. PML-NI [6]

trains noisy label identifier and multi-label classifier jointly

under supervision of the observed label matrix. In [27], authors

extend partial multi-label learning into multi-view settings.

Despite the advances that these methods have achieved, a

potential limitation is that they do not consider solving PML

problems with unlabeled data, which cannot apply directly to

the problem concerned in this paper.

III. THE PROPOSED METHOD

In semi-supervised partial multi-label learning, we consider

a set of np partially labeled instances Dp = {(xi,yi)}np

i=1 and

a large set of nu unlabeled instances Du = {xi}n=np+nu

i=nl+1 ,

where xi ∈ R
d is the feature vector and yi ∈ {1, 0}q is the

label vector with q class labels for the i-th instance. By arrang-

ing feature vectors and label vectors of n training instances, we

obtain the feature matrix X = [x1, ...,xn] ∈ R
d×n and label

matrix Y = [y1, ...,yn] ∈ R
q×n, where yji = 1 if the j-th

label is a candidate label for i-th instance; otherwise, yji = 0.

Note that yji = −1, ∀1 ≤ j ≤ q, np + 1 ≤ i ≤ n, which

indicates labels are unknown for unlabeled examples.

To deal with SSPML problems, one intuitive baseline

method is to disambiguate the candidate label set of the

partial-labeled training examples, i.e., identify all the relevant

labels from the candidate label set. Then, the original problem

is transformed into a semi-supervised multi-label learning

(SSMLL) problem, which can be effectively solved by off-
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the-shelf SSMLL methods. Unfortunately, such a strategy

separates the learning process into two stage, i.e., the candidate

label disambiguation and unlabeled data exploitation, which

may make the two components inconsistent, and subsequently

hurt the generalization performance. Unlike the two-stage

strategy, the proposed SSPML method implements candidate

label disambiguation and unlabeled data exploitation in a

joint framework. Specifically, we regard the ground-truth la-

bels as the latent variables, which form a low-dimensional

embedding space. Then by enforcing consistent similarity

structure among both partial-labeled and unlabeled examples

between the embedding space and feature space, the ground-

truth labels are recovered from the observed partial labels.

Finally, we incorporate the multi-label classifier training and

the label recovery into an unified optimization framework. In

the following contents of this section, we will introduce the

three components of similarity estimation, the ground-truth

label recovery and classifier training, respectively, and finally

present the optimization steps.

A. Similarity Estimation

Firstly, we introduce the similarity estimation by implement-

ing the feature sparse reconstruction [7]. Let S = [sij ]n×n
denote the similarity measurement matrix among training

examples, where sij reflects the similarity degree between

the i-th instance and the j-th instance. Guided by the as-

sumption that relationship between one instance and all the

other instances can be determined by the contribution of other

instances to the reconstruction of this instance, the similarity

matrix S is instantiated by implementing sparse reconstruc-

tion between this instance and all the other instances. Let

X−i = [x1, ...,xi−1,xi+1, ...,xn] denote the d × (n− 1)
feature matrix including all the instances other than xi and

si = [s1i, ..., si−1,i, si+1,i, ..., sn,i]
�

denote the (d − 1)-
dimensional similarity measurement vector. By implementing

sparse reconstruction, the similarity measurement vector si
can be learned by solving the following optimization problem:

min
si

1

2
‖X−isi − xi‖22 + α ‖si‖1 (1)

Here, the first term controls the reconstruction error to obtain

a precise similarity measurement among training instances via

�2 norm, and the second term controls the sparsity of recon-

struction via �1 norm. The relative importance is balanced by

the trade-off parameter α.

B. Ground-truth Label Recovery

As previously discussed, the ground-truth label space can be

regarded as a low-dimensional embedding space of the high-

dimensional feature space. To capture the labeling confidence

of each candidate label or unknown label, we introduce a label

variable vector zi for each training instance xi. In other words,

zji measures how likely the j-th label is a ground-truth label of

xi. By arranging the label variables of n training examples, we

obtain the label variable matrix Z = [zi, ..., zn] ∈ [0, 1]
q×n

.

As the ground-truth labels are noise-free, we can expect that

the similarity structure in the feature space still maintains in

the embedding space. In consequence, the ground-truth labels

of each training instance can be recovered by reconstruction

of label variable vectors in low-dimensional embedding space

as that of feature vectors have done in the high-dimensional

feature space. More specifically, we can recover the label

variable matrix by minimizing reconstruction error in the latent

space:

L(zi) = ‖Z−isi − zi‖22 .

However, the objective function ignores the label correla-

tion, which turns out to be an indispensable element in multi-

label learning [28], [29]. In order to make full use of label

correlation for enhancing label variable reconstruction, for

each label variable vector, the objective can be re-written as

following:

min
zi

1

2
‖LZ−isi − zi‖22 . (2)

Here, L ∈ R
q×q is the label correlation matrix, where lij

indicate the label correlation between i-th label and j-th label.

The matrix can be obtained in various ways, such as co-

occurrence matrix [4], [30].

C. MLL Classifier Training

To recover the label variables, one straightforward choice

is to solve optimization problem (1) and eq.(2) sequentially,

which recovers label variables with a fixed similarity measure-

ment. Unfortunately, such a method suffers from perturbation

of noisy data, such as outliers, which may lead to degraded

performance. In order to disambiguate correctly for partial-

labeled data and obtain a more accurate estimation for un-

labeled data, we consider learning similarity weights in an

adaptive way. By solving the optimization problem (1) and (2)

jointly, the similarities are not only determined by the manifold

structure of the feature space, but also guided by the feedback

from the label space.

Furthermore, instead of training the classifier independently,

we perform these three procedures, i.e., similarity estimation,

label variable recovery and classifier training, in a pipeline,

which makes them work consistently and benefit from each

other. By introducing a multi-label classifier W ∈ R
q×d and

b ∈ R
q , the objective function of the unified framework which

consists of these three parts can be formulated as follows:

min
S,Z,W,b

λ
2 ‖XS−X‖2F + β

2 ‖LZS− Z‖2F + α ‖S‖1 (3)

+γ
2

∥∥Z− (WX+ b1�n )
∥∥2

F
+ μ

2 ‖W‖2F
+ 1

2 ‖J ◦ (Z−Y)‖2F
s.t. sii = 0, ∀1 ≤ i ≤ n

Here, J is a indicator matrix, where Jji = 1 if j-th label is not

candidate to i-th instance, ∀1 ≤ i ≤ np; otherwise, Jji = 0.

Note that Jji = 0, ∀1 ≤ j ≤ q, np + 1 ≤ i ≤ n.
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D. Alternating Optimization

1) Updating S: With Z, W and b fixed, for the similarity

measurement matrix S, the optimization problem (3) can be

reformulated as following:

min
S,Z,W,b

λ
2 ‖XS−X‖2F + β

2 ‖LZS− Z‖2F + α ‖S‖1
s.t. sii = 0, ∀1 ≤ i ≤ n

To solve the problem, we employ the popular Alternating

Direction Method of Multiplier (ADMM) [31], which refor-

mulate the above optimization problem into the following

equivalent form:

min
S,Z,W,b

λ
2 ‖XS−X‖2F + β

2 ‖LZS− Z‖2F + α ‖S‖1
s.t. S = V, πΩ(V) = 0

where Ω is the set containing indices of diagonal elements in

similarity matrix S and πΩ : Rn×n→n×n is a linear operator

that keeps the entries in Ω unchanged and sets outside Ω,

i.e., in Ω̄, zeros. Following the ADMM procedure, the above

constrained optimization problem can be solved as a serious

of unconstrained minimization problems using augmented

Lagrangian function, which is presented as:

L (S,V,B) = λ
2 ‖XV −X‖2F + β

2 ‖LZV − Z‖2F +

α ‖S‖1 + 〈B,S−V〉+ ρ
2 ‖S−V‖2F

Here, ρ is the penalty parameter and B is the Lagrange

multiplier. A sequential minimization of variables S, V and

B can be conducted by the scaled ADMM iterations:

Sk+1 = Sα/ρ(Vk + ρ−1
k Bk)

Vk+1 = πΩ̄((T1 + ρI)
−1

(T2 +B+ ρS))

where T1 = λX�X + βZ�L�LZ and T2 = λX�X +
βZ�L�Z. And S is the proximity operator of the �1 norm,

which is defined as Sω(a) = (a− ω)+ − (−a− ω)+. Then,

the Lagrange multiplier matrix B and penalty parameter ρ are

updated based on following rules:

Bk+1 = Bk + ρ(Sk+1 −Vk+1)

ρk+1 = min(ρmax, cρk)

where ρmax is the maximum value of ρ and c is a positive

updating constant which is defined by users.

2) Updating Z: With S, W and b fixed, the optimization

problem (3) reduces to

min
Z
‖J ◦ (Z−Y)‖2F +

β

2
‖LZS− Z‖2F +

γ

2
‖Z− F‖2F (4)

where F = WX+b1�n . The above optimization problem can

be solve by updating Z with gradient decent. Specifically, the

gradient of the objective function with respective to Z is

∇Z =J ◦ (Z−Y) + γ (Z− F)+

β
(
Z− LZS− L�ZS� + L�LZSS�

)

3) Updating W and b: With S and Z fixed, the optimiza-

tion problem reduces to

min
W,b

γ
2 tr

(
ΣΣ�

)
+ μ

2 tr
(
WW�) (5)

s.t. Z = WX+ b1n +Σ

Here Σ = [e1, ..., en] ∈ R
q×n, where ei = zi−(Wxi+b). To

kernelize our method, we introduce X′ = [x
′
1, ...,x

′
n] ∈ R

d×n,

where x
′
i = φ(xi) and φ(·) : Rn → R

h is a feature mapping

that maps the feature space to some higher (maybe infinite) di-

mensional Hilbert space with h dimensions. tr (·) denotes the

trace norm operator with the property tr
(
WW�) = ‖W‖2F.

To solve the above optimization problem, its Lagrangian can

be formulated as:

L (W,b,Σ,A) =
γ

2
tr

(
ΣΣ�

)
+

μ

2
tr

(
WW�)

− tr
(
A�

(
WX′ + b1�n +Σ− Z

))
where A = [α1, ...,αn]

� ∈ R
q×n is the matrix that stores

the Lagrange multipliers.We now optimize out W,b, Σ and

A according to the KKT conditions:

∂L
∂W

= 0⇒W =
1

μ
AX

′�,

∂L
∂b

= 0⇒ A1n = 0q,

∂L
∂Σ

= 0⇒ A = γΣ,

∂L
∂A

= 0⇒ Z = WX
′
+ b1n +Σ.

Above equations can be arranged as follows:

WX
′
+ b1�n +Σ = Z

1

μ
AX

′�X
′
+ b1�n +

1

γ
A = Z

For simplicity, we introduce the positive definite matrix H =
1
μK + 1

γ In×n and define K = X
′�X

′ ∈ R
n×n by its

elements kij = φ(xi)
�φ(xj) = K(xi,xj), where K(·, ·) is

the kernel function. Then, after several simple mathematical

computations, we can obtain the final solutions:

b =
ZH−11n

1�nH−11n

A =
(
Z− b1�n

)
H−1

IV. EXPERIMENT

A. Experimental Setting

We perform experiments on eight data sets. These data sets

are related to various real-world tasks: YeastBP, YeastCC and

YeastMF for gene function prediction, music style for music

recognition, image,corel5K and corel16K for image annota-

tion, delicious for text categorization. Several characteristics

about these data sets such as the number of instances, number
of features, number of class labels,cardinality and domain are

illustrated in Table I. We also conduct some pre-processing

to facilitate the partially labeling as in [5], [8]. Specifically,
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TABLE I
CHARACTERISTICS OF THE EXPERIMENTAL DATA SETS.

Data set # Instances # Features # Class Labels Cardinality Domain
YeastBP 6139 6139 217 5.537 biology
YeastCC 6139 6139 50 1.348 biology
YeastMF 6139 6139 39 1.005 biology

music style 6839 98 10 1.44 music

delicious 16105 500 983 19.020 text
image 2000 294 5 1.236 image

corel5K 5000 499 374 3.522 image
corel16k 13811 500 161 2.867 image

TABLE II
EXPERIMENTAL RESULTS OF EACH COMPARING APPROACH IN TERMS OF ranking loss AND average precision ON YeastBP, YeastCC AND YeastMF, WHERE

•/◦ INDICATES WHETHER SPPML IS SUPERIOR/INFERIOR TO THE OTHER METHODS ON EACH DATA SET (PAIR t-TEST AT 0.05 SIGNIFICANCE LEVEL).

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.308± 0.011 0.283± 0.007 0.262± 0.009 0.232± 0.009 0.217± 0.010 0.203± 0.006
PARVLS 0.586± 0.042• 0.520± 0.022• 0.516± 0.030• 0.456± 0.032• 0.452± 0.025• 0.436± 0.023•
PARMAP 0.352± 0.022• 0.333± 0.031• 0.330± 0.025• 0.312± 0.015• 0.298± 0.010• 0.290± 0.007•
PMLLRS 0.371± 0.009• 0.343± 0.008• 0.313± 0.005• 0.274± 0.009• 0.246± 0.012• 0.237± 0.010•
PMLNI 0.355± 0.010• 0.339± 0.009• 0.305± 0.009• 0.297± 0.016• 0.386± 0.006• 0.380± 0.013•
fPML 0.497± 0.006• 0.476± 0.011• 0.464± 0.012• 0.456± 0.009• 0.446± 0.010• 0.446± 0.005•
Average precision (the greater, the better)
SSPML 0.249± 0.015 0.277± 0.017 0.303± 0.016 0.342± 0.011 0.363± 0.014 0.376± 0.009
PARVLS 0.069± 0.009• 0.084± 0.014• 0.075± 0.010• 0.097± 0.013• 0.087± 0.011• 0.095± 0.016•
PARMAP 0.124± 0.014• 0.157± 0.039• 0.166± 0.029• 0.182± 0.020• 0.201± 0.032• 0.222± 0.031•
PMLLRS 0.196± 0.009• 0.228± 0.013• 0.254± 0.012• 0.291± 0.013• 0.327± 0.014• 0.344± 0.012•
PMLNI 0.210± 0.007• 0.237± 0.003• 0.260± 0.012• 0.250± 0.017• 0.142± 0.006• 0.148± 0.005•
fPML 0.094± 0.006• 0.095± 0.007• 0.105± 0.009• 0.093± 0.002• 0.090± 0.003• 0.087± 0.003•

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.326± 0.017 0.299± 0.007 0.287± 0.022 0.252± 0.007 0.247± 0.018 0.239± 0.013
PARVLS 0.590± 0.085• 0.538± 0.076• 0.465± 0.093• 0.437± 0.044• 0.431± 0.070• 0.423± 0.065•
PARMAP 0.360± 0.041 0.358± 0.029• 0.349± 0.028• 0.341± 0.030• 0.326± 0.031• 0.320± 0.024•
PMLLRS 0.392± 0.014• 0.341± 0.008• 0.323± 0.012• 0.311± 0.011• 0.277± 0.008• 0.256± 0.012•
PMLNI 0.338± 0.016• 0.318± 0.010• 0.298± 0.005 0.293± 0.016• 0.284± 0.016• 0.273± 0.017•
fPML 0.504± 0.012• 0.433± 0.024• 0.436± 0.030• 0.446± 0.018• 0.419± 0.008• 0.411± 0.018•
Average precision (the greater, the better)
SSPML 0.308± 0.027 0.344± 0.017 0.364± 0.017 0.398± 0.016 0.409± 0.031 0.413± 0.021
PARVLS 0.181± 0.028• 0.170± 0.033• 0.175± 0.048• 0.195± 0.046• 0.202± 0.042• 0.199± 0.030•
PARMAP 0.239± 0.031• 0.260± 0.027• 0.277± 0.038• 0.269± 0.026• 0.278± 0.027• 0.282± 0.009•
PMLLRS 0.243± 0.008• 0.261± 0.009• 0.294± 0.018• 0.332± 0.003• 0.371± 0.006• 0.389± 0.015•
PMLNI 0.294± 0.013 0.308± 0.016• 0.340± 0.019• 0.356± 0.015• 0.331± 0.013• 0.335± 0.015•
fPML 0.194± 0.005• 0.196± 0.009• 0.195± 0.015• 0.199± 0.011• 0.200± 0.012• 0.201± 0.012•

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.273± 0.018 0.241± 0.014 0.226± 0.022 0.206± 0.017 0.191± 0.007 0.189± 0.016
PARVLS 0.565± 0.055• 0.558± 0.047• 0.563± 0.091• 0.492± 0.055• 0.530± 0.081• 0.471± 0.058•
PARMAP 0.407± 0.051• 0.368± 0.020• 0.345± 0.035• 0.322± 0.018• 0.320± 0.025• 0.306± 0.025•
PMLLRS 0.346± 0.025• 0.327± 0.009• 0.283± 0.009• 0.241± 0.011• 0.220± 0.016• 0.203± 0.008•
PMLNI 0.320± 0.015• 0.302± 0.028• 0.264± 0.006• 0.230± 0.007• 0.225± 0.021• 0.219± 0.016•
fPML 0.486± 0.015• 0.449± 0.018• 0.425± 0.013• 0.398± 0.009• 0.389± 0.019• 0.402± 0.013•
Average precision (the greater, the better)
SSPML 0.402± 0.020 0.445± 0.023 0.468± 0.030 0.500± 0.025 0.527± 0.012 0.537± 0.026
PARVLS 0.146± 0.018• 0.159± 0.031• 0.161± 0.039• 0.172± 0.029• 0.159± 0.027• 0.187± 0.028•
PARMAP 0.231± 0.036• 0.246± 0.015• 0.272± 0.045• 0.307± 0.024• 0.309± 0.035• 0.330± 0.040•
PMLLRS 0.329± 0.019• 0.362± 0.009• 0.399± 0.016• 0.455± 0.021• 0.504± 0.020• 0.538± 0.018
PMLNI 0.372± 0.022• 0.402± 0.033• 0.437± 0.011• 0.476± 0.017• 0.493± 0.032• 0.491± 0.027•
fPML 0.209± 0.008• 0.224± 0.009• 0.226± 0.009• 0.249± 0.013• 0.249± 0.031• 0.206± 0.011•

for data sets with too many labels (more than 100 in our

experiment), their rare labels are filtered out to keep under 15

labels, and instances without any relevant labels are filtered

out.

There are different criteria for evaluating the performances

of multi-label learning. In our experiment, we employ five
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TABLE III
EXPERIMENTAL RESULTS OF EACH COMPARING APPROACH IN TERMS OF average precision ON music style, WHERE •/◦ INDICATES WHETHER SPPML IS

SUPERIOR/INFERIOR TO THE OTHER METHODS ON EACH DATA SET (PAIR t-TEST AT 0.05 SIGNIFICANCE LEVEL).

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.204± 0.004 0.183± 0.007 0.168± 0.012 0.159± 0.010 0.152± 0.005 0.145± 0.003
PARVLS 0.206± 0.010 0.203± 0.009• 0.190± 0.005• 0.190± 0.005• 0.180± 0.006• 0.180± 0.008•
PARMAP 0.180± 0.008◦ 0.183± 0.010 0.167± 0.006 0.161± 0.003 0.156± 0.005• 0.156± 0.005•
PMLLRS 0.214± 0.013 0.203± 0.009• 0.200± 0.006• 0.186± 0.004• 0.174± 0.004• 0.168± 0.008•
PMLNI 0.239± 0.010• 0.207± 0.005• 0.181± 0.007• 0.167± 0.008• 0.157± 0.006• 0.149± 0.008
fPML 0.192± 0.011◦ 0.176± 0.008◦ 0.164± 0.007 0.156± 0.005 0.155± 0.004• 0.153± 0.004•
Average precision (the greater, the better)
SSPML 0.646± 0.005 0.682± 0.014 0.701± 0.017 0.715± 0.010 0.723± 0.006 0.729± 0.003
PARVLS 0.690± 0.004◦ 0.693± 0.008◦ 0.704± 0.007 0.702± 0.006• 0.705± 0.003• 0.704± 0.004•
PARMAP 0.676± 0.013◦ 0.681± 0.009 0.697± 0.007 0.704± 0.004• 0.708± 0.007• 0.710± 0.008•
PMLLRS 0.661± 0.009◦ 0.667± 0.015• 0.666± 0.007• 0.673± 0.005• 0.683± 0.006• 0.689± 0.010•
PMLNI 0.599± 0.009• 0.643± 0.008• 0.678± 0.014• 0.703± 0.008• 0.718± 0.009• 0.725± 0.009
fPML 0.679± 0.011◦ 0.688± 0.009 0.695± 0.011 0.706± 0.014 0.705± 0.006• 0.709± 0.006•

TABLE IV
EXPERIMENTAL RESULTS OF EACH COMPARING APPROACH IN TERMS OF average precision ON delicious, WHERE •/◦ INDICATES WHETHER SPPML IS

SUPERIOR/INFERIOR TO THE OTHER METHODS ON EACH DATA SET (PAIR t-TEST AT 0.05 SIGNIFICANCE LEVEL).

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.289± 0.004 0.275± 0.004 0.268± 0.005 0.260± 0.006 0.256± 0.002 0.254± 0.002
PARVLS 0.352± 0.006• 0.342± 0.007• 0.328± 0.006• 0.315± 0.004• 0.305± 0.003• 0.303± 0.004•
PARMAP 0.306± 0.005• 0.305± 0.005• 0.298± 0.002• 0.291± 0.002• 0.287± 0.004• 0.284± 0.004•
PMLLRS 0.291± 0.005 0.283± 0.004• 0.279± 0.004• 0.275± 0.004• 0.273± 0.003• 0.271± 0.002•
PMLNI 0.285± 0.004 0.281± 0.004• 0.276± 0.003• 0.274± 0.003• 0.272± 0.003• 0.273± 0.002•
fPML 0.296± 0.003• 0.291± 0.004• 0.289± 0.004• 0.285± 0.004• 0.283± 0.002• 0.281± 0.003•
Average precision (the greater, the better)
SSPML 0.587± 0.004 0.602± 0.003 0.609± 0.003 0.618± 0.006 0.621± 0.006 0.622± 0.002
PARVLS 0.564± 0.008• 0.573± 0.008• 0.582± 0.005• 0.595± 0.007• 0.603± 0.005• 0.606± 0.007•
PARMAP 0.559± 0.008• 0.557± 0.006• 0.564± 0.004• 0.570± 0.007• 0.573± 0.006• 0.577± 0.007•
PMLLRS 0.582± 0.005• 0.593± 0.004• 0.597± 0.005• 0.601± 0.005• 0.603± 0.005• 0.605± 0.002•
PMLNI 0.590± 0.006 0.596± 0.003• 0.601± 0.004• 0.603± 0.005• 0.605± 0.004• 0.604± 0.002•
fPML 0.579± 0.005• 0.585± 0.005• 0.587± 0.004• 0.589± 0.007• 0.591± 0.003• 0.594± 0.004•

commonly used criteria including hamming loss, ranking loss,

one error, coverage and average precision. For hamming loss,

ranking loss, one error and coverage metrics, the smaller

value, the better the performance; for average precision metric,

the greater value, the better the performance. More detail about

theses evaluation metrics can be found in [1].
To demonstrate the effectiveness of the proposed SSPML

method, we compare it with five state-of-the art PML algo-

rithms as follows:

• fPML [7]. It employ the low-rank approximation of the

observed instance-label association matrix to estimate the

labeling confidence and then trains multi-label classifier.

• PARTICLE [8]. It transforms the PML task into a multi-

label problem through a label propagation procedure.

Then a calibrated label ranking model is induced to

instantiate two PML methods PAR-VLS and PAR-MAP.

• PML-LRS [10]. It utilizes low-rank and sparse decom-

position scheme to capture the ground-truth label matrix

and irrelevant label matrix from the observed candidate

label matrix.

• PML-NI [6]. It jointly learns a noisy label identifier,

which identifies feature-induced noisy labels, as well as

a multi-label classifier for prediction.

For the comparing methods, parameters are set as suggested

in the original paper. Specifically, for fPML, balancing pa-

rameters are set as λ1 = 0.1, λ2 = 1 and λ3 = 10. For

PAR-VLS and PAR-MAP, balancing parameter α = 0.95 and

credible label elicitation threshold thr = 0.9. For PML-LRS,

balancing parameters are set as γ = 0.01, β = 0.1 and η = 1.

For PML-NI, balancing parameters are set as λ = 1, β = 1
and γ = 0.5. For our SSPML method, balancing parameters

are set as λ = 1, β = 1, γ = 1, μ = 1 and α = 0.1.

To construct partial multi-label assignment for training data

of each dataset except for the first four real-world PML data

sets, for each example xi, we randomly add the irrelevant

noisy labels of xi with θ% number of ground-truth labels, and

θ% is also randomly assigned by one of {50%, 100%, 150%}.
For each data set, we consider the percentage of partially

labeled examples in the whole training set by randomly

sampling p ∈ {0.1, 0.15, 0.2, 0.3, 0.4, 0.5} instances from the

whole training set with their candidate sets and the others

without any supervised information. For comparing methods,

only sampled partial label examples and their candidate label

sets are provided due to the fact that PML methods cannot

utilize the unlabeled data.
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TABLE V
EXPERIMENTAL RESULTS OF EACH COMPARING APPROACH IN TERMS OF average precision ON image, corek5K AND corel16K, WHERE •/◦ INDICATES

WHETHER SPPML IS SUPERIOR/INFERIOR TO THE OTHER METHODS ON EACH DATA SET (PAIR t-TEST AT 0.05 SIGNIFICANCE LEVEL).

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.274± 0.015 0.238± 0.016 0.224± 0.009 0.196± 0.014 0.190± 0.016 0.188± 0.018
PARVLS 0.348± 0.048• 0.343± 0.036• 0.334± 0.035• 0.299± 0.039• 0.285± 0.025• 0.280± 0.042•
PARMAP 0.357± 0.035• 0.344± 0.027• 0.378± 0.031• 0.348± 0.036• 0.351± 0.039• 0.350± 0.025•
PMLLRS 0.488± 0.023• 0.516± 0.007• 0.531± 0.026• 0.457± 0.019• 0.427± 0.015• 0.359± 0.019•
PMLNI 0.498± 0.011• 0.525± 0.008• 0.517± 0.019• 0.462± 0.016• 0.414± 0.029• 0.375± 0.014•
fPML 0.481± 0.017• 0.512± 0.010• 0.517± 0.024• 0.463± 0.020• 0.425± 0.017• 0.378± 0.008•
Average precision (the greater, the better)
SSPML 0.691± 0.017 0.725± 0.011 0.740± 0.006 0.767± 0.019 0.777± 0.018 0.778± 0.016
PARVLS 0.648± 0.033• 0.649± 0.046• 0.663± 0.030• 0.698± 0.023• 0.710± 0.030• 0.710± 0.034•
PARMAP 0.635± 0.023• 0.652± 0.025• 0.646± 0.036• 0.652± 0.045• 0.654± 0.028• 0.652± 0.021•
PMLLRS 0.491± 0.021• 0.477± 0.006• 0.474± 0.016• 0.539± 0.014• 0.554± 0.012• 0.619± 0.020•
PMLNI 0.495± 0.010• 0.477± 0.006• 0.491± 0.018• 0.540± 0.013• 0.575± 0.029• 0.609± 0.013•
fPML 0.491± 0.010• 0.477± 0.013• 0.478± 0.010• 0.535± 0.016• 0.556± 0.018• 0.609± 0.011•

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.332± 0.007 0.296± 0.020 0.275± 0.008 0.250± 0.003 0.240± 0.006 0.230± 0.004
PARVLS 0.623± 0.097• 0.559± 0.047• 0.492± 0.036• 0.420± 0.021• 0.404± 0.020• 0.385± 0.017•
PARMAP 0.317± 0.008◦ 0.314± 0.006• 0.310± 0.009• 0.307± 0.004• 0.303± 0.005• 0.294± 0.009•
PMLLRS 0.307± 0.012◦ 0.289± 0.009 0.274± 0.010 0.253± 0.014 0.242± 0.009 0.234± 0.009
PMLNI 0.276± 0.015◦ 0.265± 0.010◦ 0.252± 0.003◦ 0.241± 0.011 0.284± 0.005• 0.229± 0.006
fPML 0.316± 0.007◦ 0.313± 0.008• 0.310± 0.004• 0.298± 0.003• 0.304± 0.010• 0.283± 0.010•
Average precision (the greater, the better)
SSPML 0.426± 0.006 0.459± 0.019 0.485± 0.007 0.500± 0.009 0.511± 0.008 0.518± 0.011
PARVLS 0.370± 0.016• 0.383± 0.019• 0.376± 0.024• 0.407± 0.017• 0.404± 0.020• 0.403± 0.020•
PARMAP 0.419± 0.004• 0.418± 0.007• 0.421± 0.006• 0.427± 0.006• 0.432± 0.008• 0.438± 0.009•
PMLLRS 0.421± 0.016 0.440± 0.006• 0.461± 0.016• 0.479± 0.016• 0.493± 0.012• 0.503± 0.013•
PMLNI 0.465± 0.012◦ 0.479± 0.017◦ 0.489± 0.010 0.503± 0.014 0.426± 0.011• 0.508± 0.008•
fPML 0.417± 0.007• 0.420± 0.010• 0.424± 0.009• 0.437± 0.006• 0.424± 0.014• 0.455± 0.004•

p = 0.10 p = 0.15 p = 0.20 p = 0.30 p = 0.40 p = 0.50
Ranking loss (the smaller, the better)
SSPML 0.305± 0.005 0.270± 0.006 0.254± 0.003 0.240± 0.005 0.235± 0.005 0.231± 0.004
PARVLS 0.487± 0.037• 0.572± 0.038• 0.426± 0.015• 0.406± 0.009• 0.389± 0.012• 0.395± 0.009•
PARMAP 0.317± 0.004• 0.303± 0.003• 0.295± 0.007• 0.294± 0.004• 0.277± 0.006• 0.270± 0.007•
PMLLRS 0.269± 0.007◦ 0.256± 0.004◦ 0.250± 0.004 0.241± 0.007 0.237± 0.003 0.234± 0.006•
PMLNI 0.263± 0.004◦ 0.280± 0.015 0.248± 0.003 0.265± 0.003• 0.236± 0.004 0.232± 0.008
fPML 0.313± 0.009• 0.314± 0.008• 0.293± 0.006• 0.299± 0.002• 0.267± 0.004• 0.260± 0.008•
Average precision (the greater, the better)
SSPML 0.431± 0.006 0.454± 0.006 0.467± 0.004 0.477± 0.005 0.479± 0.008 0.482± 0.009
PARVLS 0.381± 0.014• 0.402± 0.006• 0.405± 0.015• 0.420± 0.006• 0.426± 0.007• 0.422± 0.007•
PARMAP 0.405± 0.003• 0.417± 0.009• 0.419± 0.008• 0.427± 0.008• 0.441± 0.005• 0.447± 0.006•
PMLLRS 0.440± 0.005◦ 0.453± 0.005 0.457± 0.005• 0.467± 0.006• 0.471± 0.008• 0.473± 0.008•
PMLNI 0.450± 0.005◦ 0.435± 0.014• 0.462± 0.003• 0.445± 0.004• 0.471± 0.010• 0.476± 0.006•
fPML 0.417± 0.009• 0.418± 0.008• 0.433± 0.009• 0.433± 0.003• 0.456± 0.003• 0.460± 0.010•

TABLE VI
FRIEDMAN STATISTICS FF IN TERMS OF EACH EVALUATION METRIC AND

THE CRITICAL VALUE AT 0.05 SIGNIFICANCE LEVEL ( # COMPARING

ALGORITHMS k = 6, # DATA SETS N = 48).

Evaluation metric FF critical value
Hamming Loss 63.7239

2.2946
Ranking loss 54.9085
One Error 26.7657
Coverage 34.6036
Average Precision 47.8730

B. Comparison Results

Due to the page limit, we report the statistical summary

results for all of the five performance measures, while only

report detailed results of each comparing methods in terms

of ranking loss and average precision. The results on ranking
loss and average precision are reported in Table II, III, V

and IV, while similar results can be observed in terms of

other evaluation metrics. For each data set, pairwise t-test

based on five-fold cross validation (at 0.05 significance level)

is conducted to show whether the performance of SSPML

is significantly different to the comparing approaches. For

gene function prediction tasks, the results reported in Table

II show that SSPML outperforms comparing methods with

significant superiority. Accordingly, it can be observed that: 1)

SSPML achieves better performances than comparing methods

in all cases on Yeast BP; 2) SSPML outperforms comparing

methods significantly in almost all cases except on Yeast CC
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Fig. 2. Comparison of PML-NI (control algorithm) against five comparing algorithms with the Bonferroni-Dunn test. Algorithms not connected with PML-NI
in the CD diagram are considered to have a significantly different performance from the control algorithm (CD = 0.9837 at 0.05 significance level).

for case with sampling rate p = 0.10, where PARMAP and

PMLNI achieve comparable performances with SSPML in

terms of ranking loss and average precision, respectively;

3) SSPML outperforms comparing methods significantly in

almost all cases on YeastMF except for case with sampling

rate p = 0.50, where PMLLRS is comparable to SSPML in

terms of average precision. For music recognition tasks, the

results shown in Table III demonstrate that SSPML achieves

highly comparable performances to all the state-of-art PML

methods. Based on the experimental results, it can be observed

that SSPML is comparable or significantly better than the

comparing methods in most cases on music style except for

cases with sampling rate p = 0.10 and p = 0.15, where

SSPML is comparable or worse than the comparing methods.

One possible reason is that there is no enough examples

for providing SSPML with adequate supervised information

when p is small. For text categorization tasks, as shown in

Table IV, SSPML significantly outperforms other methods in

almost all cases on delicious except for case with sampling

rate p = 0.10, where PML-LRS and PML-NI are comparable

to SPPML. For image annotation tasks, results are reported

on Table V, from which we can observe that SSPML also

achieves highly comparable performances to all the compared

methods. Based on the experimental results, it can be observed

that: 1) SSPML outperforms comparing methods significantly

in all cases in terms of ranking loss and average precision on

image. 2) SSPML achieves better performances than PARVLS,

PARMAP and fPML in almost all cases on corel5k and

corel16k except for the case with sampling rate p = 0.10,

where PARMAP and fPML outperforms SSPML in terms

of ranking loss on corel5K; 3) SSPML achieves better or

comparable performance than PMLLRS and PMLNI except

for cases with sampling rate p = 0.10 and p = 0.15, where

PMLLRS and PMLNI show some superiority in some cases.

Furthermore, Friedman test [32] is employed as the statistic

test to evaluate the relative performance among the comparing

methods. Assume that there are k algorithms and N data sets.

Let rji denotes the rank of j-th algorithm on the i-th data set.

The average ranks of algorithms Rj = 1
N

∑
i r

j
i is used for

Friedman test comparison. Under the null-hypothesis, which

indicates that all the algorithms have equivalent performance,

the Friedman statistic FF with respective to the F-distribution

with (k − 1)(N − 1) degree of freedom can be defined:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(6)

where,

χ2
F =

12N

k(k − 1)

⎡
⎣∑

j

R2
j −

k(k + 1)2

4

⎤
⎦ (7)

Table VI presents the Friedman statistics FF and the cor-

responding critical value with respective to each evaluation

metric. For each evaluation metric, the null hypothesis of

indistinguishable performance among the comparing algorithm

is rejected at 0.05 significance level.

In final, we use the post-hoc Bonferroni-Dunn test [32] to

evaluate the relative performance among comparing methods.

Here, PML-NI is regarded as the control method whose

average rank difference against the comparing algorithm is

calibrated with the critical difference (CD):

CD = qα

√
k(k + 1)

6N
(8)

where critical value qα = 2.576 at 0.05 significance level.

Accordingly, SPPML is deemed to have significantly different

performance to one comparing algorithm if their average ranks

differ by at least one CD (CD = 0.9837 in our experiment: #

comparing algorithms k = 6, # data sets N = 8 × 6 = 48).

Figure 2 shows the CD diagrams [32] on each evaluation

metric, where the average rank of each comparing algorithm

is marked along the axis (lower ranks to the right). In each

subfigure, any comparing algorithms whose average rank is

within one CD to that of SSPML is interconnected to each

other with a thick line. It can be observed that SSPML achieves

the best (lowest) average rank among comparing methods and

outperforms all other comparing methods at least one CD

in terms of all evaluation metrics. The experimental results

demonstrate the significance of the superiority for our SSPML

approach.
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(a) Legend (b) performance curve with λ changes (c) performance curve with β changes

(d) performance curve with γ changes (e) performance curve with μ changes (f) performance curve with α changes

Fig. 3. Results of PML-NI with varying value of trade-off parameters on music style.

C. Sensitive Analysis

In this section, we study the influences of five balancing

parameters, λ, β, γ, μ and α for the proposed approach on

the real-world data sets. We conducted experiments by varying

one parameter while keeping the other four parameters fixed.

Due to the page limit, we only show the experimental results

which are measured by the five evaluation metrics on real-

world data set music style in Figure 3. As we can see, in

general, performance is not sensitive to the parameters except

for the parameter β, whose performance will be significantly

degraded when the value of β is too large (approximates to

100 in the experiment). Therefore we can safely set them in

a wide range in practice.

V. CONCLUSION

In this paper, we propose a new learning framework named

semi-supervised partial multi-label learning (SSPML), where

each instance is either associated with a candidate label set

or even without any supervised information. A latent label

variable vector is maintained for each instance as the low-

dimensional embedding of the feature space. By minimizing

the sparse reconstruction error, label variables along with

similarity weights are optimized by sharing consistent simi-

larity measurement between the feature space and label space.

Meanwhile, label variables are employed to induce a classifier

for semi-supervised multi-label prediction. Experiments are

performed on multiple datasets from various applications; and

results validate that the proposed approach are superior to

state-of-the-art partial multi-label approaches. In the future,

we plan to improve the SSPML algorithms by exploiting other

structure information of unlabeled data.
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