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Abstract

It is expensive and difficult to precisely annotate objects with
multiple labels. Instead, in many real tasks, annotators may
roughly assign each object with a set of candidate labels. The
candidate set contains at least one but unknown number of
ground-truth labels, and is usually adulterated with some ir-
relevant labels. In this paper, we formalize such problems as
a new learning framework called partial multi-label learning
(PML). To solve the PML problem, a confidence value is
maintained for each candidate label to estimate how likely
it is a ground-truth label of the instance. On one hand, the
relevance ordering of labels on each instance is optimized by
minimizing a rank loss weighted by the confidences; on the
other hand, the confidence values are optimized by further
exploiting structure information in feature and label spaces.
Experimental results on various datasets show that the pro-
posed approach is effective for solving PML problems.

Introduction

Multi-label learning (MLL) deals with the problem where
each object is assigned with multiple class labels simultane-
ously (Zhang and Zhou 2014). For example, an image may
be annotated with labels sea, sunset, and beach. The task of
multi-label learning is to train a classification model that can
predict all the relevant labels for unseen instances.

In traditional multi-label studies, a common assumption
is that each training instance has been precisely annotated
with all of its relevant labels. However, in many applica-
tions, this assumption hardly holds because the precise anno-
tation is usually difficult and costly. Instead, annotators may
roughly assign each instance a set of candidate labels. In ad-
dition to the relevant labels, the candidate set also contains
some irrelevant labels. For example, in Figure 1, the image
is annotated with a set of candidate labels, which may be
the union set of annotations from multiple noisy annotators
under the crowdsourcing setting. While the annotation cost
is significantly reduced by partial labeling, the learning task
becomes much more challenging because the ground-truth
labels are mixed with some irrelevant labels, and the num-
ber of ground-truth labels is even unknown.
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Figure 1: An example of partial multi-label learning. The
image is partially labeled by noisy annotators in crowdsourc-
ing. Among the candidate labels, building, window, sky and
street are ground-truth labels while people, car and tree are
irrelevant labels.

We formalize this learning problem as a new framework
called partial multi-label learning (PML). More specifically,
PML tries to learn a multi-label model from partially labeled
training examples, where each instance is annotated with a
set of candidate labels, indicating the following supervised
information: a) the candidate set may consist of both relevant
and irrelevant labels; b) the number of relevant labels in the
candidate set is at least one but unknown; c¢) labels not in the
candidate set are irrelevant to the instance.

PML is a novel learning framework with significant dif-
ference from existing settings. There are some studies try-
ing to exploit weak supervision for multi-label learning. For
example, semi-supervised MLL(Wang and Tsotsos 2016;
Wu et al. 2015; Belkin, Niyogi, and Sindhwani 2006) trains
the model based on both unlabeled and precisely labeled
examples; MLL with weak label allows missing labels
(Sun, Zhang, and Zhou 2010; Bucak, Jin, and Jain 2011;
Zhao and Guo 2015). However, these approaches do not con-
sider partial labeling with candidate label sets, and cannot be
applied to PML problems. Partial label learning(Cour, Sapp,
and Taskar 2011; Szummer and Jaakkola 2001) is similar to
PML, but is designed for single-label case, where there is
always one ground-truth label in the candidate set. We will
discuss the differences between PML and related studies in



more detail in the next section.

Partial multi-label learning degenerates into standard
multi-label learning if the ground-truth labels can be iden-
tified from the candidate set. Unfortunately, this task is
rather challenging or even impossible. Instead, we assume
that each candidate label has a confidence of being the
ground-truth label, and alternatively optimize the classi-
fication model and the confidence values. Specifically, to
achieve multi-label classification, we optimize the relevance
ordering of label pairs to rank relevant labels before irrele-
vant labels based on the ground-truth confidences. To opti-
mize the ground-truth confidence of candidate labels, in ad-
dition to rank loss minimization, we offer two options to fur-
ther exploit either the local structure of the feature space or
the label correlations. The tasks are formulated into a uni-
fied objective function, and can be efficiently solved by al-
ternating optimization of quadratic programming and linear
programming. Our empirical study on datasets from diverse
domains demonstrates the effectiveness of the proposed ap-
proach.

The main contributions are summarized as follows.

e A new learning framework PML is proposed to learn
multi-label models from partially labeled data. PML de-
fines a practical learning task and is significantly different
from existing multi-label learning settings.

e Two effective algorithms PML-Ic and PML-fp are pro-
posed for solving PML problems. They offer options to
optimize the ground-truth confidences of candidate labels
by exploiting the structure information from either feature
or label space.

e Experiments on various datasets validate the effectiveness
of the proposed approaches.

The rest of the paper is organized as follows. We start by
a brief review of related works. Then we formulate the prob-
lem and propose the algorithm. Next, experimental results
are reported, followed by the conclusion.

Related Work

There is a rich body of literature on multi-label learning.
The most straightforward approach for multi-label learning
is to decompose the task into a set of binary classification
problems (Joachims 1998; Boutell et al. 2004). Such meth-
ods treat each label independently, and ignore the corre-
lation among labels, which is crucial to multi-label learn-
ing (Zhang and Zhou 2014). Later, many studies try to ex-
ploit the label correlations. Some of them focus on pairwise
correlation (Fiirnkranz et al. 2008; Elisseeff and Weston
2001), while some others consider higher order correlation
among all labels (Tsoumakas, Katakis, and Vlahavas 2011;
Read et al. 2011). Multi-label learning has been successfully
applied to various tasks, e.g., image classification (Cabral et
al. 2011; Wang et al. 2016; Wu et al. 2015), text categoriza-
tion (Rubin et al. 2012) and gene function prediction (Elis-
seeff and Weston 2001).

There are some studies trying to learn multi-label mod-
els from weak supervised information. Some approaches
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try to train the classification model based on both un-
labeled and precisely labeled examples. For instance, la-
bel propagation based methods are developed for semi-
supervised multi-label learning in (Wang and Tsotsos 2016;
Kong, Ng, and Zhou 2013); a simultaneous large-margin and
subspace learning approach is proposed in (Guo and Schuur-
mans 2012); and a low-rank mapping based method is intro-
duced in (Jing et al. 2015). Some other approaches focus on
the case where some relevant labels are missing. For exam-
ple, Sun et. al. (2010) propose to study multi-label learning
with weak labels based on low-density assumption; Bucak
et. al. (2011) propose a ranking based method for multi-label
learning with incomplete class assignments; and Yu et. al.
(2015) develop a large scale method for multi-label learning
with missing labels. There are also some methods trying to
learn from both clean and noisy data (Veit et al. 2017). How-
ever, these methods do not consider partial labeling with
candidate label sets, and cannot solve PML problems.

Partial label learning is similar to our PML problem but
is specifically for single-label tasks. It assumes that there is
always exactly one ground-truth among the candidate set.
Most partial label learning methods employ the strategy of
disambiguation, i.e., trying to recover the ground-truth label
from the candidate label set. One disambiguation strategy is
to assume certain parametric model F'(z,y;0) and ground-
truth label is regarded as latent variable. Here, the latent vari-
able is iteratively refined by optimizing certain objectives,
such as the maximum likelihood criterion(Grandvalet and
Bengio 2004; Jin and Ghahramani 2002; Liu and Dietterich
2012), or the maximum margin criterion (Yu and Zhang
2017). Another way towards disambiguation is to assume
equal importance of each candidate label and then make pre-
diction by averaging their modeling outputs. For paramet-
ric models, the averaged output from all candidate labels is
distinguished from the outputs from candidate labels (Cour,
Sapp, and Taskar 2011). For non-parametric models, the pre-
dicted label for unseen instance is determined by averag-
ing the candidate labeling information from its neighboring
examples in the PL training set (Hiillermeier and Beringer
2006; Zhang and Yu 2015). The learnability of partial label
learning has been studied in (Liu and Dietterich 2014). Com-
pared to partial label learning, PML is much more challeng-
ing because the number of ground-truth labels in the candi-
date set is unknown, which makes disambiguation inappli-
cable.

The PML Approach
Problem Formulation
Let X = R? denote the input space with d-
dimensions features and VY = {y1,y2,....y,} be a fi-

nite set consisting of ¢ possible class labels. D
{(x1,Y1), (X2, Y2), ..., (Xpn, V) } is a training set with m
partially labeled instances, where x; € X is the feature vec-
tor and SA/Z C ) is the candidate label set of the i-th exam-
ple. We further denote by Y; = ) \ Y; the non-candidate
label set and Y; the ground-truth label set for instance x;.
Note that Y; C Yi, and is unknown, while in traditional
multi-label learning, Y; = Y;. We also want to emphasize



that even |Y;| is unknown, which makes partial multi-label
learning much more challenging than the single-label case.
Because when |Y;| = 1, one could expect to recover the only

ground-truth label from Y; by selecting the most likely one.
The goal of partial multi-label learning is to train a classifier
h : X — 2% based on the partial multi-label training set D.
In most multi-label studies, instead of directly outputting the
classifier h, the learning system will produce a real-valued
function of the form f : X x Y — R, which predicts larger
values for relevant labels than irrelevant ones. Here we in-
troduce a linear classifier for each label y;, in the form of
fr(x;) = (Wi, x;) + by, where wi, € R% and b, € R are
the weight vector and bias of the classifier.

Algorithm Detail

To solve PML problems, one straightforward baseline
method is to simply take all labels in the candidate set as
relevant labels and then directly apply standard multi-label
algorithms for model training. Obviously, such methods will
be misled by the irrelevant labels in the candidate set. To
overcome this problem, we assume that each candidate la-
bel has a confidence of being ground-truth label. Formally,
we denote by P;, € [0, 1] the confidence of label y;, being
a ground-truth label of instance x;. Note that if y, is a non-
candidate label, i.e., y; € Y;, then it is for sure irrelevant to
X;, and thus P;; = 0. In contrast, if y, is a candidate label,
then its confidence P;; is unknown and to be learned. For
convenience, we further introduce P = [Pk, x4 to denote
the confidence matrix for the whole training set.

In the following part of this subsection, we will firstly in-
troduce the multi-label classification model which incorpo-
rates label ranking with the confidence matrix, then present
two strategies for optimizing the confidence matrix, and at
last summarize the whole procedure of the algorithm.

To achieve multi-label classification, the relevance order-
ing of label pairs is optimized to rank relevant labels before
irrelevant ones on each instance, and then a proper number
of top ranked labels are selected as relevant ones. Specif-
ically, we consider the relevance ordering of two kinds of
label pairs: 1) the inter-set label pair with one label from the
candldate set Y; and the other one from the non-candidate set

Y;; 2) the intra-set label pair with two labels both from the

candidate set Y;. For an inter-set label pair (yx, ;) € Y; x Y;,
yr. should be ranked before ¥; on instance x; with a confi-
dence of P;;. The ranks over the whole training set can be
optimized by minimizing the ranking loss (Elisseeff and We-
ston 2001) weighted by the confidences:
- 1
min
W 2w ( 2
Y Y1) EYi X Y;

(Wi = Wi, X) + 0, —by > 1 =&
Ei >0 (L<i<m, (yr,y) €Y xY),

where &;1; is the slack variable of the ranking loss. Obvi-
ously, a candidate label with higher ground-truth confidence
will be ranked before irrelevant labels with more emphasis.
As an extreme case, when P, = 0, it implies that yy, is ir-
relevant to x;, and will not contribute any ranking loss.

ey

Pk - Sira

s.t.
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For an intra-set label pair (yx, y;) € Y; x Y;, the label with
higher ground-truth confidence should be ranked before the
other one. Similarly, we can have the following optimization
problem to minimize the ranking loss of intra-set label pairs
over the whole training set:

Z e | 1 > P& 2
= (Y y1)EYi X Y;
(Wi —wi, %) b — b > 1 =&

Em >0 (1<i<m,(ye,y)eY xY),

s.t.

where P, = max (0, P;x — P;;) measures how confident yy,
should be ranked before g; for instance x;.

Noticing that for any y; € Y;, we have P;; = 0, and thus
IE’W = P;;,— P;; = P;;. So we can incorporate Eq. 1 and Eq.
2 to consider the ranking loss for both inter-set and intra-set
label pairs in a unified objective function:

Z||Wk|| +CIZ > Pubim

"y €Y

3)

W.b

s.t. <Wk — W, X;) + bk —b>1—=&n
Ci >0 (1<i<m, yp,y €J),
where Pikl = max(O,PZ-k—Pil),and% = |)A/;H}7Z|+|Y;|2/2

is a constant for normalization on instance x;. The first term
is a regularizer to control the model complexity, and C is a
trade-off parameter.

In the above discussions, we assume that the confidence
matrix P is given. However, the elements in P correspond-
ing to the candidate labels are unknown. Next, we will show
how to optimize the ground-truth confidences for candidate
labels of each instance. First of all, the confidences values
are expected to be consistent with the model predictions.
However, optimizing P solely based on the model predic-
tion may suffer from overfitting given that the model itself is
trained according to P. We thus expect to exploit the struc-
ture information from data to further guide the optimization
of the confidence matrix P. Here, we present two options to
regularize the confidence learning.

The first option is to learn P based on label correla-
tions. Specifically, we assume a label correlation matrix
S = [S]gxq. Where the element Sy; denote the correlation
between y;, and y;, and a larger value implies a stronger cor-
relation. It is expected that two labels with strong correlation
should share similar confidence values. We thus try to max-
imize the term de, Sy.(Py, - Pi.)T, where Si. and P;.
denote the k/i-th row of S and P, respectively. While there
are multiple ways to calculate S, we simply employ the co-
occurrence rate of two labels as their correlation (Diplaris
et al. 2005). By further incorporating the model predictions,
we have the following optimization problem for learning the



confidence matrix P:

mFl,n Clz Z Pii - Eint
" ye €Y
—022 > Sk(Pu- P, (4)
i=1 ey,
.t. e > <1<
s.t ZykEEsz >1 (1<i<m)
0<Py<1l (€Y, 1<i<m)

P =0 (yp €Y;, 1 <i<m),

where the first constraint corresponds to the fact there is at
least one ground-truth label in multi-label learning. Noticing
that the model wy, and by, is fixed, we have &, = 1 — (wy, —
wy,X;) — b + by in Eq. 4. Then by combing Eq. 4 with Eq.
3, we have the final objective function for partial multi-label
learning with label correlations (PML-Ic for short):

I/g,lli:lP Z [lw||* + C Z Z Pt - &inl
" Yk, €Y
~Cs Z > S (P P)T ®)
i=1 ey,
st. (Wr—w,X) + b — b >1— &

Cr >0 (1<i<m, yp,y €Y),
P >1 1< <
Dper, Pzl (1<ism)
0<Pp<1
Py, =0

(yr € Vi, 1 <i<m)
(yr €Y, 1 <i<m).

The second option is to learn P based on feature pro-
totype. Specifically, we assume a feature prototype @)y, for
each label y;, which can be regarded as a representative
instance of yi. In our implementation, we simply calcu-
late ) as the average over all instances associated with
yi. Then given an instance x;, it is more likely to have
yr. as the ground-truth label if it has larger similarity with
Q. This observation motivates us to minimize the term

> key Pir - |Ixi — Q|| Similar to Eq. 4, we have
min 012 > P in
i=1 1! Yk Y1 €Y
+032 D P lxi — Qi (6)
i=ly,ev;
t. Pr>1 (1<i<
T S
0< Py <1 (ykéﬁ, 1<i<m)
P =0 (yp€Y;, 1<i<m),

Then by combing Eq. 6 with Eq. 3, we have the final ob-
jective function for partial multi-label learning with feature
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Algorithm 1 The PML-fp algorithm
Input:
1: Partial label training set D = {(x;,Y;)|1 <1i < m};
2: The nonnegative trade-off parameters C; and Cs;
3: Maximal number of iterations maxIter;
Process:
4: Calculate the feature prototypes @ for each label yy;

5: Initialize the confidence matrix P;
6: iter <+ 1;
7: repeat:
8: Optimize W and b with fixed P by solving Eq. 3;
9: Optimize P with fixed W and b by solving Eq. 6;
10: iter < iter + 1
11: until convergence or iter exceeds maxlter
12: Output trained model wy, and by, fork =1,--- | ¢

prototypes (PML-fp for short):

m

pin, Yl a3t S hue
=1 "y yey
+C3 Z Z P - [|x; — Qx| (7
=1y, eV,
st (Wp—wi, X)) +b—b >1—&p

>0 (1<i<m, yr,y1 €J),
CPpr>1 (1<i<
ZykEYi k= (_Z_m)
0<Prp<1
Py, =0

We summarize the key steps of PML-fp in Algorithm 1.
Firstly, the feature prototypes are calculated for each label,
and the ground-truth confidence matrix is initialized. Then
the optimization problem in Eq. 7 is solved by alternat-
ing optimization. Specifically, with fixed P, the last term in
Eq. 7 becomes a constant, and the optimization problem is
equivalent to Eq. 3, which can be solved by quadratic pro-
gramming. When optimizing P with fixed W and b, the
optimization problem is equivalent to Eq. 6, which can be
solved by linear programming. The alternating optimization
procedure iterates, and terminates once the objective func-
tion converges or iter exceeds a maximal number predefined
by users. The process of PML-Ic is similar to Algorithm 1
except that, at line 4, label correlations are calculated, and at
line 9, Eq. 4 is optimized instead of Eq. 6.

In the test phase, a ranking list of labels can be obtained
based on the model predictions. Then a threshold is needed
to separate relevant and irrelevant labels from the ranking
list. This is a common step for label ranking based multi-
label classification, and has many existing solutions (Elisse-
eff and Weston 2001). In our case, one can decide the thresh-
old value as the average of maximum prediction over non-
candidate labels, or specify a fixed number as the relevant la-
bel set size. We employ the latter method in our experiments
for simplicity. We set it as the average number of relevant
labels on the training set.

(ye €Yi, 1 <i<m)
(yr €Y;, 1 <i <m).



Table 1: Characteristics of the experimental data sets.

Data set # Instances | # Dim | # Class Labels | # Candidate Labels | Domain
emotions (Trohidis et al. 2008) 593 72 6 34,5 music
yeast (Elisseeff and Weston 2001) 2417 103 14 6,7,8,9,10,11,12,13 | biology
CAL500 (Turnbull et al. 2008) 500 68 15 6,7,8,9,10,11,12,13 music

genbase (Diplaris et al. 2005) 662 1186 15 6,7,8,9,10,11,12,13 biology

medical (Pestian et al. 2007) 978 1449 15 6,7,8,9,10,11,12,13 text

corel5k (Duygulu et al. 2002) 5000 499 15 6,7,8,9,10,11,12,13 images
delicious (Tsoumakas et al. 2008) 14000 500 15 6,7,8,9,10,11,12,13 text

Table 2: Comparison of PML with state-of-the-art multi-label learning approaches on five evaluation criteria. The best perfor-
mance and its comparable performances are bolded (statistical significance examined via pairwise t-tests at 95% significance

level).
Data [ #CL [ PML-lc PML-fp [ RankSVM BSVM ML-ANN LIFT
Hamming loss (the smaller, the better)
Emotions 4 247 £.000 252+ .000 | .578 £.000 .603+.001 .662=+.000 .675+.001
Yeast .2154+.000 .215+.000 | .617 £.000 .696 +.000 .694+.000 .684 = .000
CALS500 314 +.000 .315+.000 | .637 £.000 .6874.000 .686=+.000 .698 +.000
Genbase 10 018 +.000 .018 +.000 | .783 £.000 .8494.001 .874+.000 .902 =+ .000
Medical .069 £+ .000 .069 £+ .000 | .682 +.000 .661+.000 .914+.000 .891 +.000
Corel5K .151+£.000 .1424.000 | .745+.000 .734+£.000 .886+.000 .887 £ .000
Delicious 289 +£.000 .289+.000 | .610 £.000 .688+.000 .706+.000 .698 £ .000
Ranking loss (the smaller, the better)
Emotions 4 202+£.000 .2124+.001 | .349+£.001 .272+.001 .377+.001 .375=+.003
Yeast .189+£.000 .189 £.000 | .201 £.000 .361+.000 .200=+.000 .210 £ .000
CAL500 .329 £.000 .328 £.000 | .410£.000 .408 £.000 .352+.000 .321 £.000
Genbase 10 007 £.000 .008 £.000 | .014 £.000 .0594.001 .031+.000 .106 =+ .005
Medical 113 £.000 .113+.000 | .188 £.000 .2144.000 .268+.002 .162=+.001
Corel5K .383 £.000 .315+.000 | .422 +£.001 .4204.000 .334+.000 .316 = .000
Delicious 274+ .000 .274+.000 | .314+.000 .363+.000 .342+.000 .333+.000
One error (the smaller, the better)
Emotions 4 307 £.001 322 +.002 | .531 £.001 .407+.004 .447+.003 .506 + .004
Yeast 245 +.000 2494 .000 | .257£.000 .646+£.001 .253 +.000 .258 £ .000
CAL500 450 £.005 446 +.006 | .621 +£.002 .740+£.002 .510=+.001 .452+.001
Genbase 10 .044 +£.000 .045+.001 | .115+£.002 .189+.005 .050+.001 .2954+.014
Medical 426 £.002 423 £.002 | 441 +£.005 .652+.002 .579+.002 .529 £ .003
Corel5K .782+.000 .7144.000 | .822+£.000 .855+.000 .749+.000 .703 £ .000
Delicious 399 +.000 .398 +.000 | 437 £.000 .5944.000 .489+.000 .525=+.000
Coverage (the smaller, the better)
Emotions 4 336 £.003 347 £ .007 | .448 £.004 .398£..004 .489+.005 .492+.017
Yeast 492 4+.002 488 +.002 | .511+£.001 .646+.002 .502+.000 .523+.002
CALS500 .650 +£.007 .649 +.007 | .674 £ .006 .677+.003 .684+.018 .661+.019
Genbase 10 020 +£.001 .021+.001 | .028 £.003 .0724+.012 .055+.010 .127+.077
Medical 130 +.004 130 +.004 | .134 +£.006 .228 +.008 .284+.030 .178 +.012
Corel5K 469 +£.002 .410£.001 | .504£.016 .501+£.002 .429 +.005 .409 £ .000
Delicious 587 £.000 587+ .000 | .606 £.000 .648+.001 .659+.000 .645+.001
Average precision (the greater, the better)
Emotions 4 769 £.001 762+ .001 | .625+£.000 .702+.001 .619+.001 .612+.003
Yeast 738 £.000 738 +£.000 | .725 £+ .000 .5114.000 .727+.000 .714 =+ .000
CALS500 567 £.000 .568 £+ .000 | .481 £.000 .4424.000 .546+.000 .581 +.000
Genbase 10 969 +.000 .967 £+ .000 | .928 £.001 .8594+.003 .939+.001 .766+.010
Medical .695+.001 .697£.001 | .685+£.002 .510+£.001 .526+.002 .609 £ .002
Corel5K .355 £.000 .420+.000 | .321 +£.000 .303+.000 .3964.000 .423 £ .000
Delicious .611+£.000 .611+.000 | .581 +£.000 .502+.000 .543+.000 .538 £ .000
Experiments fectiveness of the proposed algorithms PML-/c and PML-fp,
Setti we compare with multi-label learning methods, which re-
ettings

PML is a new learning framework, and there is no method
can be directly applied to PML problems. To examine the ef-
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gard all candidate labels as relevant. The following state-of-
art methods are compared: RankSVM (Elisseeff and Weston



2001), ML-kNN (Zhang and Zhou 2007), BSVM (Boutell
et al. 2004) and LIFT (Zhang and Wu 2015).

For PML-Ic, the label correlation is extracted according
to the method in (Diplaris et al. 2005). For PML-fp, the fea-
ture prototype is defined by averaging features of training
instances associated with a specific label. For both PML-fp
and PML-lc, C1 is fixed to 1 as default on all datasets. Cy
is selected from {1,2,--- ,10}, and Cj is selected from {1,
10, 100} with regard to the performance on hamming loss.
The influences of parameters are presented in the following
content. For other methods, parameters are selected as sug-
gested in the corresponding literatures.

There are different criteria for evaluating the perfor-
mances of multi-label learning. In our experiments, we em-
ploy five commonly used criteria hamming loss, one error,
coverage, ranking loss and average precision. More details
about these criteria can be found in (Zhang and Zhou 2014).

We perform the experiments on seven datasets. These data
sets spanned a broad range of applications: corel5k for im-
age annotation, CAL500 and emotions for music classifica-
tion, yeast for gene function prediction, genbase for protein
classification, medical for text categorization and delicious
for web categorization. For each data set, several statistics
are used to depict its characteristics. Specifically, we illus-
trate number of instances, number of classes, number of can-
didate labels and domain for each data set at Table 1. Here
number of candidate labels lists some options for the size
of candidate label set. For each instance, we randomly pick
some irrelevant labels to construct the candidate set with
ground-truth labels. We also did some pre-processing to fa-
cilitate the partial labeling. Specifically, rare labels are fil-
tered out to keep at most 15 labels, and instances without
any relevant label are filtered out.

Results

Due to page limit, we cannot report all results with every
possible size of the candidate label set. Instead, we report
the detailed results for a specific candidate set size (the me-
dian of all optional sizes), and the statistical results for all
optional set sizes. Specifically, the median set size is 4 for
emotions and 10 for the other datasets.

The detailed results are presented in Table 2. When com-
paring the PML approach (either PML-/c or PML-fp) with
other methods, our algorithms show significant superiority.
They achieve the best performance in most cases. PML-Ic
and PML-fp are comparable with each other. Among the
four compared multi-label approaches, LIFT shows some
superiority, and achieves the best performance of 2 criteria
on CAL500 and 3 criteria on Corel5K, while loses for the
other cases. It is worth noting that our PML methods simply
use a linear model for each label. It is expected to achieve
better performance if more powerful base models are used.

In addition, we performed experiments with all possible
sizes of the candidate label set. PML-Ic and PML-fp are
compared with other methods on each data set with respect
to each criterion. Statistical significance is examined with
pairwise t-test at 95% significance level. Table 3 summa-
rizes the win/tie/loss counts of our methods versus the other
methods.
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Figure 2: Results of PML-Ic and PML-fp with varying value
of trade-off parameters.

The results show that our methods outperform the others
with varied sizes of candidate label set. PML-/c and PML-fp
are still significantly better than other approaches in most
cases. One exception is on the smallest dataset CAL500,
where LIFT outperforms our methods over 3 criteria. This
is probably because that there is too few training examples
to recover the structure information. PML-/c and PML-fp
are comparable on most datasets except for the Corel5K, on
which PML-Ic is outperformed by PML-fp along with ML-
kNN and LIFT. One possible reason that PML-Ic performs
worse on image data is that the average number of instances
associated with each label is relatively small on the image
data, and thus the estimated label correlation based on co-
occurrence may be less accurate.

At last, we study the influence of the trade-off parameters
on the performances of PML-Ic and PML-fp. While C] is
fixed to 1 as default, we plot the performance curve in Fig. 2
as the parameters C'; and C5 change. Specifically, Fig. 2 (a)
presents the performances of PML-Ic when C5 changes from
1 to 10 with step size of 1, and Fig. 2 (b) presents the perfor-
mances of PML-fp when C3 changes among {1, 10,100}
As we can see, in general the performance is not sensitive to
the parameters.



Table 3: Win/tie/loss counts (pairwise t-test at 95% significance level) on five multi-label learning criteria: Hamming loss,
Ranking loss, One error, Coverage and Average precision of PML-Ic and PML-fp against each comparing algorithm with

different candidate set sizes .

Data PML-Ic versus PML-fp versus
PML-fp RankSVM BSVM ML-AKNN LIFT | PML-lc RankSVM BSVM ML-ANN LIFT

Hamming loss (the smaller, the better)
Emotions 2/1/0 3/0/0 3/0/0 3/0/0 3/0/0 | 0/1/2 3/0/0 3/0/0 3/0/0 3/0/0

Yeast 2/2/4 8/0/0 8/0/0 8/0/0 7/1/0 | 47272 8/0/0 8/0/0 8/0/0 7/1/0
CALS500 3/3/2 8/0/0 7/0/1 7/0/1 7/0/1 2/3/3 8/0/0 7/0/1 7/1/0 7/0/1
Genbase 2/3/3 8/0/0 8/0/0 8/0/0 8/0/0 | 3/3/2 8/0/0 8/0/0 8/0/0 8/0/0
Medical 5/172 8/0/0 8/0/0 8/0/0 8/0/0 | 2/1/5 8/0/0 8/0/0 8/0/0 8/0/0
Corel5K 0/0/8 8/0/0 8/0/0 8/0/0 8/0/0 | 8/0/0 8/0/0 8/0/0 8/0/0 8/0/0
Delicious | 4/3/1 8/0/0 7/0/1 8/0/0 7/0/1 1/3/4 8/0/0 7/0/1 8/0/0 7/0/1
Ranking loss (the smaller, the better)
Emotions 3/0/0 3/0/0 3/0/0 3/0/0 3/0/0 | 0/0/3 3/0/0 3/0/0 3/0/0 3/0/0

Yeast 5/2/1 8/0/0 8/0/0 7/0/1 5/2/1 1/2/5 8/0/0 8/0/0 7/0/1 4/0/4
CAL500 0/7/1 8/0/0 8/0/0 8/0/0 1/1/6 1/7/0 8/0/0 8/0/0 8/0/0 1/1/6
Genbase 2/2/4 8/0/0 8/0/0 8/0/0 8/0/0 | 4/2/2 8/0/0 8/0/0 8/0/0 8/0/0
Medical 1/6/1 6/1/1 8/0/0 8/0/0 6/0/2 1/6/1 6/0/2 8/0/0 8/0/0 6/0/2
Corel5K 0/0/8 8/0/0 7/0/1 0/0/8 0/0/8 8/0/0 8/0/0 8/0/0 7/0/1 4/0/4
Delicious | 4/3/1 8/0/0 8/0/0 8/0/0 6/0/2 1/3/4 8/0/0 8/0/0 8/0/0 6/1/1
One error (the smaller, the better)
Emotions | 2/0/1 3/0/0 2/0/1 3/0/0 3/0/0 1/02 3/0/0 2/0/1 3/0/0 3/0/0

Yeast 4/1/3 8/0/0 7/0/1 6/0/2 6/1/1 3/1/4 8/0/0 8/0/0 6/0/2 7/0/1
CALS500 4/1/3 8/0/0 7/0/1 5/0/3 3/0/5 3/1/4 8/0/0 7/0/1 5/0/3 2/0/6
Genbase 3/2/3 8/0/0 8/0/0 8/0/0 8/0/0 | 3/2/3 8/0/0 8/0/0 8/0/0 8/0/0
Medical 6/0/2 8/0/0 8/0/0 8/0/0 6/1/1 2/0/6 8/0/0 8/0/0 8/0/0 6/1/1
Corel5K 0/0/8 8/0/0 7/0/1 2/0/6 0/0/8 8/0/0 8/0/0 7/0/1 7/0/1 5/0/3
Delicious | 4/1/3 8/0/0 8/0/0 8/0/0 6/0/2 | 3/1/4 8/0/0 8/0/0 8/0/0 6/0/2
Coverage (the smaller, the better)
Emotions 3/0/0 3/0/0 3/0/0 3/0/0 3/0/0 | 0/0/3 3/0/0 3/0/0 3/0/0 3/0/0

Yeast 5/172 8/0/0 8/0/0 7/0/1 5/0/3 2/1/5 8/0/0 8/0/0 6/0/2 5/0/3
CAL500 0/7/1 8/0/0 8/0/0 8/0/0 6/0/2 1/7/0 8/0/0 8/0/0 8/0/0 6/0/2
Genbase /572 8/0/0 8/0/0 8/0/0 8/0/0 | 2/5/1 8/0/0 8/0/0 8/0/0 8/0/0
Medical 1/4/3 7/0/1 8/0/0 8/0/0 6/0/2 | 3/4/1 6/0/2 8/0/0 8/0/0 6/0/2
Corel5K 0/0/8 8/0/0 7/0/1 0/0/8 0/0/8 8/0/0 8/0/0 8/0/0 7/0/1 3/0/5
Delicious | 4/3/1 7/0/1 8/0/0 8/0/0 8/0/8 1/3/4 7/0/1 8/0/0 8/0/0 8/0/0
Average precision (the smaller, the better)
Emotions 3/0/0 3/0/0 2/0/1 3/0/0 3/0/0 | 0/0/3 3/0/0 2/0/1 3/0/0 3/0/0

Yeast 3/2/3 8/0/0 8/0/0 7/0/1 5/172 | 31273 8/0/0 8/0/0 7/0/1 5/172
CALS500 2/412 8/0/0 7/1/0 6/0/2 0/2/6 | 2/4/2 8/0/0 8/0/0 6/0/2 0/2/6
Genbase 2/3/3 8/0/0 8/0/0 8/0/0 8/0/0 | 3/3/2 8/0/0 8/0/0 8/0/0 8/0/0
Medical 4/2/2 8/0/0 8/0/0 8/0/0 6/0/2 | 2/2/4 8/0/0 8/0/0 8/0/0 6/0/2
Corel5K 0/0/8 8/0/0 7/0/1 0/0/8 0/0/8 8/0/0 8/0/0 7/1/0 7/0/1 4/1/3
Delicious 3/5/0 8/0/0 8/0/0 8/0/0 6/0/2 | 0/5/3 8/0/0 8/0/0 8/0/0 6/0/2

Conclusion References

In this paper, we propose a new learning framework named
partial multi-label learning (PML), where each instance is
associated with a set of candidate labels. A confidence value
is defined for each candidate label to estimate how likely
it is a ground-truth label. By minimizing the confidence
weighted ranking loss and exploiting data structure infor-
mation, the classification model along with the ground-truth
confidence are optimized in a unified framework. Experi-
ments are performed on various datasets, and results validate
that the proposed approaches are superior to state-of-the-art
multi-label approaches. In the future, we plan to improve the
PML algorithms by incorporating domain knowledge and
designing more advanced classification models.
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